Альтернативное отопление частного дома

Содержание:

Система теплового насоса

Работа теплового насоса основана на сборе теплоты от сторонних (геотермальных) низкотемпературных источников:

  1. Грунт;
  2. Вода – водоем или подземный слой;
  3. Воздух.

Работа устройства реализуется через способность хладагента кипеть при низкой температуре. Наружная сеть сбора тепла наполнена теплоносителем (обычно незамерзающим). Теплоноситель циркулирует и доставляет тепло в испаритель. От нагрева на 5 – 7С хладагент закипает и его пары покидают теплообменный аппарат.

Затем они сжимаются компрессором (при этом приобретают большее давление и температуру) и подаются в конденсатор, где отдают тепло воде системы отопления. После конденсатора сжиженный хладагент проходит через дроссельный клапан. Там он резко расширяется и со сниженным давлением, охлажденный, вновь поступает в испаритель.

Наружные сети сбора тепла монтируются из полимерных трубопроводов.

Они забирают тепло от доступных источников на земельном участке. В случае сооружения сети в почве контуры заглубляют на глубину ниже точки промерзания для соответствующего региона (справочные данные).

Также сети монтируют в сопредельные водоемы или бурят скважины для доступа к грунтовым водам.

Глубина скважин варьируется от 30 до 150 метров, стоимость работ по их строительству довольно высока.

Использование теплоты воздуха реализуется чаще всего в самых южных регионах, где наружная температура редко достигает отрицательных значений.

Схема работы теплового насоса является энергозависимой – работа компрессора обеспечивается электрическим приводом. При затратах 1 кВт электроэнергии получают от 4,5 до 5,5 кВт теплоты. Температура теплоносителя, произведенного тепловым насосом, наиболее приемлема для работы низкотемпературных комплексов отопления – теплых полов, теплых стен, медных конвекторов.

Начальные вложения для всех систем альтернативного отопления имеют солидные значения. Самостоятельное изготовление и монтаж энергопроизводящих альтернативных установок имеет свои сложности. Внедрение систем отопления на базе альтернативного источника энергии доступно пока немногим из-за высокой стоимости оборудования.

Но техника развивается и совершенствуется, запасы углеводородов неумолимо истощаются, все виды топлива дорожают. Такие тенденции дают новые перспективы развития комплексам альтернативного отопления, что наиболее актуально для владельцев частных домов и дач.

(Просмотров 266 , 1 сегодня)

Рекомендуем прочитать:

Отопление частного дома теплыми полами

Водяные теплые полы от полотенцесушителя в квартире

Газовые котлы отопления

Монтаж отопления в частном доме

Квартирный теплосчетчик

Вакуумные радиаторы отопления

Тепловые насосы

В этом случае альтернативные источники отопления являются энергией воды и земли. В теплый период времени эта система используется как крупный кондиционер – она охлаждает здание, передавая избыток тепла земле.

Принцип работы теплового насоса с использованием энергии воды

Достоинством данного способа обогрева является полная экологическая чистота, что достигается использование одних только возобновляемых ресурсов. Стоимость альтернативного отопления в доме тепловыми насосами ниже, чем у газового отопления на 15%. Тем не менее, недостатком выступает высокая стоимость оборудования.

Также минусом является потребность в электроэнергии. Эту проблему можно решить двумя способами. Обычно дешевле использовать центральную энергосеть, однако этот вариант не подходит для отдаленных населенных пунктов, где часто встречаются перебои с электроэнергией.

Хорошим решением выступает использование собственного генератора, но и оно не идеально. С одной стороны, это позволяет сделать дом полностью автономным, а с другой – возникает потребность в монтаже генераторной установки и её обслуживании. Это снижает экономическую эффективность использования тепловых насосов, но мощный генератор может обеспечивать энергией не только отопительную систему, но и другие приборы в доме.

СОЛНЕЧНЫЕ КОЛЛЕКТОРЫ — ОТЛИЧНЫЙ ВИД АЛЬТЕРНАТИВЫ

Современное отопление частного дома может быть обеспечено за счет многочисленных альтернативных способов обогрева, среди которых солнечный коллектор является одним из наиболее эффективных. В отличие от солнечных батарей, где вырабатывается солнечная электроэнергия, устройство солнечных коллекторов позволяет концентрировать тепловую энергию Солнца и направлять ее на нагревание теплоносителя (воды, масла, воздуха, антифриза и пр.). Циркулирующий в коллекторе теплоноситель нагревается, после чего накопленное тепло передается в резервуар-накопитель для последующего расходования в системе отопления и горячего водоснабжения.

Тепловые насосы


Тепловые насосызаимствованию энергии от окружающей среды. тепловой котёл окупается за пару лет

Основы работы тепловых насосов

  1. Теплоноситель двигается по трубопроводу, который проложен, допустим, в землю, прогревается на 3−4 градуса. Потом он проходит через тепловой насос и теплообменник и передаёт тепло, которое накапливается в окружающей среде, во внутренний контур.
  2. Внутренний контур заполнен хладогеном. Это вещество обладает довольно низкой температурой кипения. Хладоген проходит через испаритель и переходит из жидкого состояния в газообразное. Это происходит в условиях низкого давления и температуры.
  3. В компрессоре происходит сжатие газообразного хладагента и повышение температуры
  4. Далее горячий газ проникает в конденсатор, где происходит теплообмен между газом и теплоносителем. В отопительную систему хладоген передаёт собственное тепло, охлаждается, и опять становится жидкостью. После этого в отопительные приборы попадает нагретая жидкость.
  5. Когда хладоген проходит через редукционный клапан — снижается давление. Далее хладоген переходит в испаритель, и происходит повторное движение цикла.

Виды тепловых насосов

Все тепловые насосы работают по такому же принципу, как и любой холодильник, но есть различия в их реализации. По типу применяемого теплоносителя тепловые насосы различаются таким образом:

  1. Грунт-вода. Наиболее универсальные тепловые насосы — грунт-вода. Они подходят практически под все климатические условия. Даже в областях вечной мерзлоты на глубине 30-ти метров температура грунта выше 0 °C. Таким образом, теплообменники погружаются в скважины, где забирают тепло у грунта. Стоимость бурения одной скважины составляет около 1500−2000 рублей за метр. Также необходимо смонтировать насос и погрузить зонды.
  2. Вода-вода. Если в Вашем районе есть грунтовые воды на небольшой глубине, тогда стоимость реализации проекта значительно уменьшится.
  3. Воздух-вода.Данный вид насоса аккумулирует тепло из воздуха. Такие насосы более просты в монтаже и цена у них довольно демократичная. Но если температура на улице падает, то эффективность такого насоса снижается.
  4. Воздух-воздух.Тепловой насос воздух-воздух наиболее дешёвый в монтаже. За счёт того, что электричество затрачивается не на обогрев воздуха, а на работу перекачивающего с окружающей среды тепла компрессора. Инвенторы хороших производителей способны обогревать помещение даже при температуре — 25 °C.

Принимая во внимание все особенности каждого вида альтернативного отопления, можно придти к выводу, что при правильных расчетах и умелом монтаже можно получить отличный вариант обогрева практически из воздуха, без расходования природных ресурсов

Обогрев тепловыми насосами по типу рассол-вода

Для осуществления проекта необходимо пробурить скважину до 200 м в глубину. В ней должны располагаться трубы по U-образной форме вместе с раствором. Можно устроить теплообменник, который будет размещаться на глубине не меньше 5 м. Это необходимо для снижения разницы получаемого тепла в различные месяцы в году.

Схема отопления на основе насоса рассол-вода.

Глубину и количество скважин определяют на основе возможности получить необходимые 50 Вт тепловой энергии. Она получается с каждого погонного метра пробуренной скважины. В итоге альтернативное отопление частного дома при помощи тепловых насосов по схеме вода-вода или рассол-вода характеризуется минимальными затратами на отопления по сравнению с показателями, характеризующими другие виды отопительных систем.

Как сделать ветрогенератор

Солнечные электростанции не работают ночью и в пасмурную погоду, а электричество требуется всегда. Поэтому, проектируя альтернативную энергетику для дома своими руками, нужно предусмотреть в ней генератор, не зависящий от солнца.

Для использования в качестве второго источника энергии отлично подойдёт ветрогенератор. Его можно собрать даже из б/у запчастей, что существенно сэкономит ваши средства.

Список того, что понадобится для сборки ветряка:

  1. Генератор с магнитным возбуждением от грузовика или трактора.
  2. Труба с наружным диаметром 60 мм и длиной 7 метров.
  3. Полтора метра трубы с внутренним диаметром 60 мм.
  4. Стальной трос.
  5. Скобы и колышки для крепления троса.
  6. Провода, сечением 4 мм².
  7. Повышающий редуктор 1 к 50.
  8. ПВХ труба, диаметром 200 мм.
  9. Диск от циркулярной пилы.
  10. Два разъёма EC-5.
  11. Кусок стального листа, толщиной 1 мм.
  12. Лист алюминия, толщиной 0,5 мм.
  13. Подшипник под внутренний диаметр мачты.
  14. Муфта для соединения валов генератора и редуктора.
  15. Труба под внутренний диаметр подшипника, длина — 60 см.

Изготовление ветроколеса для дома

Главным элементом любого ветряка являются лопасти, поэтому их нужно изготовить первыми.

Чтобы определиться с размерами, используйте таблицу.

Ветроколесо по мощности в идеале должно совпадать с генератором, но из-за чрезмерно больших размеров получающегося колеса это не всегда возможно. Поэтому чаще всего мощность лопастей значительно ниже таковой у генератора. В этом нет ничего страшного.

Разрежьте ПВХ трубу на отрезки, равные длине лопастей. Распилите их пополам по продольной оси. Перерисуйте на половинки трубы разметку и по ней вырежьте лопасти. Отпилите от заготовок треугольники. Из стального листа вырежьте крепления для лопастей и просверлите в них дырки. Возьмите диск от циркулярной пилы, насверлите в нём отверстий и болтами прикрутите лопасти к диску.

Сборка, установка и подключение

Выройте яму и забетонируйте в ней трубу с внутренним диаметром 60 мм. Возьмите семиметровую трубу и, отступив 1 метр от края, установите на неё скобы. Вварите в тот же край трубы подшипник, используя аргонную сварку.

Согните из стального листа раму и снизу приварите к ней трубу, которая влезает в подшипник. Закрепите на раме редуктор с генератором, соединив их валы. Установите снизу рамы и на верхушке мачты 2 ограничителя в виде штырей. Они не дадут раме поворачиваться больше, чем на 360 градусов. Сделайте флюгер из алюминиевого листа и закрепите его на задней части рамы. В основании мачты просверлите отверстие для провода.

Подключите к генератору провод и протяните его сквозь раму и мачту. Оденьте на вал редуктора ветроколесо и закрепите его на нём. Вставьте раму в подшипник и покрутите её. Она должна легко вращаться.

Ветряк в сборе выглядит примерно так:

  1. Лопасти.
  2. Диск от циркулярки.
  3. Редуктор.
  4. Соединительная муфта.
  5. Генератор.
  6. Флюгер.
  7. Крепление флюгера.
  8. Подшипник.
  9. Ограничители.
  10. Мачта.
  11. Провод.

Вбейте в землю колышки так, чтобы расстояние от мачты до каждого из них было одинаковым. Привяжите тросы ко скобам на мачте. Для установки мачты нужно вызывать автокран. Не пытайтесь установить ветрогенератор самостоятельно! В лучшем случае вы разобьёте ветряк, в худшем — пострадаете сами. После поднятия мачты автокраном, направьте её основание в забетонированную ранее трубу и дождитесь, пока кран опустит её в трубу.

Трос нужно привязывать к колышку в натянутом состоянии. Причём все тросы должны быть привязаны так, чтобы мачта стояла строго вертикально, без перекосов.

Подключать ветрогенератор нужно к зарядному устройству через разъём ЕС-5. Сама зарядка устанавливается в щитке с оборудованием СЭС и подключается напрямую к аккумулятору.

Сборка электростанции закончена. Теперь вы не останетесь без электричества, даже если вам отключат свет на длительное время. При этом не придётся тратить деньги на топливо для генератора и время на его доставку. Все будет работать автоматически и не потребует вашего вмешательства.

Преимущества применения тепловых насосов

Экономия. Если сравнить расходы на отопление с помощью теплового насоса с расходами на газовое оборудование, то получится внушительная сумма с разницей в пользу насосов. А все потому, что альтернативные источники в системе отопления — это тепловая энергия воды и земли.

Безопасная работа. Относительно взрыво- и пожароопасности отопительного оборудования, работающего на газу, электрический тепловой насос для отопления дома является вполне безобидным прибором! Сюда же можно отнести и простоту эксплуатации оборудования.

Универсальность применения. Тепловой насос может работать как на обогрев помещений, так и на их охлаждение (нечто сродни работе сплит-систем в режимах «тепло-холод»).

Полная автоматизация работы. В отличие от твердотопливных котлов, тепловые насосы не требуют постоянной загрузки топлива, к тому же они не нуждаются в постоянном контроле, осмотре, чистке.

А еще тепловому насосу не требуется подключение к магистральному газопроводу – это автономное отопление загородного дома, которое обеспечивается простым подключением к сети электропитания.

Возобновляемые природные источники тепловой энергии

Однако существуют такие системы и источники тепла, затраты на эксплуатацию которых существенно ниже, чем во всех описанных выше случаях, в том числе и при газовом отоплении. Речь идет о возобновляемых природных источниках тепловой энергии:

  1. Энергия ветра.
  2. Тепло земли.
  3. Солнечная энергия.

Энергия ветра

Предназначенные для индивидуального использования ветроэнергетические установки (ВЭУ) в основном применяются для производства электрической энергии для решения задач энергообеспечения дома.

В основе принципа действия данных установок лежит процесс вращения колеса при помощи силы ветра с последующей выработкой электрической энергии.

Схема работы отопления от энергии ветра. Нажмите для увеличения.

Эффективность использования ВЭУ существенно увеличивается при дополнительном использовании источников бесперебойного питания, гелиевых аккумуляторных батарей либо дополнительных фотоэлектрических панелей.

Основной недостаток ВЭУ — использование энергии ветра на полную мощность в наших климатических условиях возможно лишь 70-110 дней в году.

Тепло земли

Альтернативное отопление в частном доме может быть выполнено в виде теплового насоса, обеспечивающего сбор низкотемпературной тепловой энергии грунта, повышение ее теплового потенциала и транспортировку в систему теплоснабжения дома.

Тепловые насосы безопасны с экологической точки зрения, экономичны, способны утилизировать практически любой вид низкотемпературной теплоты.

Схема отопления дома энергией земли. Нажмите для увеличения.

К недостаткам данного варианта устройства систем теплоснабжения (отопление, горячее водоснабжение, кондиционирование воздуха) относится относительная сложность монтажа и установки, которую обязательно нужно производить при устройстве нулевого цикла из-за большого объема земляных работ.

Солнечная энергия

Использование солнечной энергии относится к разряду наиболее перспективных направлений, в том числе и в условиях умеренного климата. Принцип действия подобных систем довольно прост.

Принцип работы солнечных батарей. Нажмите для увеличения.

В гелиоколлектор поступает солнечная энергия, где производится ее преобразование в тепловую. Теплоноситель обеспечивает передачу тепловой энергии в системы отопления, горячего водоснабжения либо аккумулятор, откуда производится ее конечное потребление.

Основное достоинство солнечного отопления — практически «дармовой» возобновляемый источник энергии на протяжение круглого года.

Из недостатков можно отметить первоначальные затраты по монтажу системы и нежелательность использования в частном жилом доме в качестве основного источника тепла.

Послесловие

В данной статье мы довольно кратко рассмотрели отопление частного жилого дома, альтернативное газовому. Надеемся, что после ее прочтения вы сможете выбрать наиболее оптимальный для вас источник отопления либо отдадите предпочтение комбинации описанных выше схем.

Ветровая энергия

Энергия, вырабатываемая специальным ветряком, является одной из самых востребованных, так как движение воздушных масс никогда не прекратится. Сегодня установки доступны каждому, однако должного распространения они не получили по объективным причинам:

  1. Высокая стоимость оборудования и монтажа
  2. Необходимость большой свободной площади для размещения крупногабаритного изделия

В районах, в которые ветра исключительно порывистые и нечастые, использование ветряков экономически нецелесообразно. Полученную механическую энергию напрямую использовать для нагрева теплоносителя нельзя без специального трансформирующего устройства.

СОЛНЕЧНЫЕ КОЛЛЕКТОРЫ — ОТЛИЧНЫЙ ВИД АЛЬТЕРНАТИВЫ

Современное отопление частного дома может быть обеспечено за счет многочисленных альтернативных способов обогрева, среди которых солнечный коллектор является одним из наиболее эффективных. В отличие от солнечных батарей, где вырабатывается солнечная электроэнергия, устройство солнечных коллекторов позволяет концентрировать тепловую энергию Солнца и направлять ее на нагревание теплоносителя (воды, масла, воздуха, антифриза и пр.). Циркулирующий в коллекторе теплоноситель нагревается, после чего накопленное тепло передается в резервуар-накопитель для последующего расходования в системе отопления и горячего водоснабжения.

Использование энергии ветра и солнца

Ветрогенераторы в отопительных системах

Кинетическая энергия ветра, как правило, используется для электроснабжения зданий, но мощные модели в условиях, близких к идеальным, могут обеспечить и обогрев, по крайней мере, частичный

Если не брать во внимание первоначальные расходы, то для потребителя получаемое электричество ничего не стоит

Очень важно, что для работы ветрогенератора не нужны вспомогательные ресурсы, они всё время функционируют автономно. Эти установки в качестве вспомогательных источников энергии удачно интегрируются в системы, где основными являются отопительные устройства других типов. Эти установки в качестве вспомогательных источников энергии удачно интегрируются в системы, где основными являются отопительные устройства других типов

Эти установки в качестве вспомогательных источников энергии удачно интегрируются в системы, где основными являются отопительные устройства других типов.

Существует много типов конструкций ветряков, но обычно их разделяют на две большие категории:

  1. Горизонтальные ветрогенераторы с лопастями типа «пропеллера». Эти агрегаты производительнее (коэффициент использования энергии ветра до 52%), поэтому больше подходят для нужд отопления, но обладают целым рядом эксплуатационных и потребительских ограничений.
  2. Ветрогенераторы с вертикальной осью вращения. Эти турбины сравнительно слабомощные (КИЭВ менее 40%), но не требуют ориентирования на ветер, могут использовать не только ламинарные, но и турбулентные потоки, начинают вырабатывать ток даже на малых скоростях. Их легче обслуживать, так как генератор находится возле земли, а не на мачте в гондоле.

Вот некоторые недостатки использования ветряков для отопления:

  • Высокие капитальные затраты. Более 70 процентов средств уходит на вспомогательные элементы: аккумуляторы, инвертор, управляющую автоматику, конструкции для установки. Вложения окупаются только через несколько десятков лет.
  • Невысокий КПД – малая мощность. Кроме того, часть энергии теряется в процессе преобразования электричества в тепло.
  • На местности требуется наличие постоянных ветров с высокой скоростью. Энергия нестабильна, сильно зависит от погоды и времени года, требует регулярного контроля и аккумулирования.
  • Оборудование занимает много места.
  • Ветрогенераторы во время работы создают много шума.

Гелиосистемы выполняют прямой нагрев теплоносителя либо преобразовывают энергию фотоэлектрическим методом. В первом варианте солнечные лучи нагревают воду/антифриз (в некоторых моделях – воздух), которая транспортируется в помещения и посредством радиаторов отдаёт тепло. Во втором случае фотоны света трансформируются в электрическую энергию, питающую обычные отопительные устройства, работающие на электричестве (котлы, обогреватели, тёплые полы).

Соответственно, существует два типа устройств:

  • Солнечные коллекторы. Система состоит из контура для циркуляции теплоносителя, аккумулирующего бака и самого коллектора. В зависимости от конструкции, выделяют коллекторы: плоские, вакуумные и воздушные (как теплоноситель используется воздух).
  • Солнечные батареи. Установка состоит из панелей с фотоэлементами, контроллеров и инвертора. Батарея вырабатывает постоянный ток напряжением 24 или 12 вольт, который собирается в аккумуляторах и после преобразования инвертором в переменный (220 В) подаётся на розетки.

Недостатков у солнечных установок несколько. Прежде всего зависимость от метеорологических факторов и цикличности (сезонной и суточной). Батареи имеют небольшой КПД, чтобы дать большой объём стабильной энергии, они должны занимать большую площадь и комплектоваться дорогостоящими аккумуляторными батареями, которые довольно часто приходится менять. Недостатком коллекторов является их зависимость от электричества (для работы насоса или вентилятора), или, например, опасность замерзания теплоносителя.

Ветровая энергия

Энергия, вырабатываемая специальным ветряком, является одной из самых востребованных, так как движение воздушных масс никогда не прекратится. Сегодня установки доступны каждому, однако должного распространения они не получили по объективным причинам:

  1. Высокая стоимость оборудования и монтажа
  2. Необходимость большой свободной площади для размещения крупногабаритного изделия

В районах, в которые ветра исключительно порывистые и нечастые, использование ветряков экономически нецелесообразно. Полученную механическую энергию напрямую использовать для нагрева теплоносителя нельзя без специального трансформирующего устройства.

Требования к системам отопления загородных домов

Общие правила принятые СНиП выглядят достаточно просто, по рекомендациям специалистов температура в отопительный период не должна опускаться ниже 12 градусов

Особое внимание уделяется мерам по обеспечению пожарной безопасности, для каждого типа системы они будут отличаться

Самым лучшим расположением приборов принято считать место, под оконными проемами, а сама разводка должна отвечать нормам эксплуатационной надежности. Для воздушного теплоносителя я советую устанавливать механическую вентиляцию, тогда результат от нагревательных приборов будет максимально эффективным. Пропиленгликоль для системы отопления не запрещен правилами, эта жидкость отлично подходит для различных систем.

Сборка и подключение ветрогенератора

Вторым по популярности источником альтернативной энергии является ветер. Самодельные ветрогенераторы позволяют обеспечить дом теплом с минимальными затратами.

Первый этап. Выберите подходящий тип конструкции и ее мощность. Новичкам рекомендуется отдавать выбор в пользу наиболее популярных вертикальных ветрогенераторов. Мощность подбирайте индивидуально. Повышение мощности ветрогенератора осуществляется путем увеличения размера рабочего колеса и добавления дополнительных лопастей.

Второй этап. Сделайте фундамент для ветрогенератора. Достаточно элементарного трехточечного основания. Глубину и площадь конструкции определяйте индивидуально с учетом характеристик почвы и особенностей климата в месте строительства.

Установку мачты выполняйте не ранее полного застывания основания, т.е. примерно через 1,5-2 недели. Вместо фундамента вы можете использовать растяжки. Это еще более простой вариант установки мачты. Выройте небольшой котлован глубиной примерно 50-60 см, установите в него мачту ветрогенератора и надежно закрепите конструкцию с помощью обыкновенных растяжек.

Третий этап. Изготовьте лопасти. В домашних условиях для этого прекрасно подойдет металлическая бочка

Вам нужно разделить емкость на одинаковые части в количестве равном числу выбранных лопастей.Предварительно нанесите отметины, важно, чтобы лопасти имели строго одинаковый размер.Вырежьте лопасти будущего ветрогенератора. В этом вам поможет болгарка

При отсутствии болгарки можно обойтись ножницами для резки металла.


Самодельный ветрогенератор

Четвертый этап. Зафиксируйте заготовку на генераторе с помощью болтов, а затем отогните лопасти. От того, насколько сильно будут отогнуты лопасти, зависят многие параметры работы ветрогенератора. Какие-то конкретные рекомендации в этом плане дать нельзя. Определить подходящий угол вы сможете только опытным путем.

Пятый этап. Подключите к генератору электропровода и соедините элементы системы в цепь. Зафиксируйте генератор на мачте ветряка, после чего подключите провода к мачте и включите в цепь генератор и аккумулятор. Дайте нагрузку при помощи проводов. На этом ветрогенератор готов. Можете подключать его к системе водяного отопления посредством все тех же накопительных емкостей.


Ветрогенератор

Таким образом, использование альтернативной энергии – это очень перспективное направление, однозначно заслуживающее внимания. Теперь и вы можете почувствовать себя частью современного мира и существенно сэкономить на обогреве, собрав простую ветряную или солнечную установку. Следуйте инструкции, и все получится.

Удачной работы!

Энергия ветра


Ветряные мельницы

Ветер, попадая на лопасти турбины, вращает её и при этом вырабатывается энергия. Эффективность энергии (КПД) не превышает 59%. Ещё 1920 году учёный Бец получил это значение. С того времени это значение называется «предел Беца». Таким образом, если узнать КПД преобразования, можно определить необходимую мощность электростанции.

Отличительные особенности ветряных генераторов

Установки различаются в зависимости от технических характеристик ветродвигателя:

  • число лопастей;
  • расположение оси вращения;
  • шаг винта;
  • материал элементов.

Ветряные генераторы бывают с вертикальной и горизонтальной осью вращения.

Пропеллерная конструкция с горизонтальной осью может быть с одной или несколькими лопастями. Такие ветряные установки наиболее распространенные, так как у них самый большой КПД.

Конструкции с вертикальной осью подразделяют на ортогональные и карусельные (ротор Дарье и Савониуса).

  • Ротор Дарье— ортогональная конструкция, у которой аэродинамические лопасти располагаются симметрично друг другу и крепятся они на радиальных балках. Данный вариант ветродвигателя довольно сложный за счёт аэродинамической конструкции лопастей.
  • Ротор Савониуса — конструкции ветродвигателя карусельного типа с двумя лопастями, которые образуют форму синусоиды. У таких конструкций коэффициент полезного действия не высок (не более 15%). Но если лопасти по направлению волны ставить не горизонтально, а в вертикальное положение и сделать конструкцию многоярусной с угловым смещением пар лопастей относительно друг друга, тогда можно увеличить КПД практически вдвое.

Преимущества и недостатки ветряных электростанций


бесплатную электроэнергию

Для того, чтобы ветряная установка работала эффективно требуются постоянные ветровые потоки, а это зависит только от природы. Техническим недостатком является низкое качество электричества, поэтому систему необходимо дополнять вспомогательными модулями (зарядными устройствами, аккумуляторами, стабилизаторами и пр.).

У горизонтально-осевых установок достаточно высокий КПД, но для стабильной работы необходим контроллер направления ветрового потока и приспособления, которые защищают от ураганных ветров.

Вертикально-осевые установки имеют небольшой КПД, но они достаточно компактны и устойчивы во время сильных ветров. Работают без механизма, который позволяет следить за направлением ветра и практически бесшумны.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector