Как проверить конденсатор при помощи мультиметра

Проверка на короткое замыкание

Есть три способа проверить конденсатор на короткое замыкание:

  1. Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.
  2. Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.
  3.  Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.

Полярные и неполярные разновидности

Среди огромного количества конденсаторов, выделяют два основных типа: полярные (электролитические), неполярные. Как диэлектрик в этих устройствах применяют бумагу, стекло, воздух.

Особенности полярных конденсаторов

Название «полярные» говорит само за себя — они обладают полярностью и являются электролитическими. При включении их в схему, необходимо точное ее соблюдение — строго «+» к «+», а «-» к «-». Если проигнорировать это правило, работать элемент не только не будет, но может и взорваться. Электролит бывает жидким или твердым.

Диэлектриком здесь служит пропитанная электролитом бумага. Емкость элементов колеблется в пределах от 0,1 до 100 тысяч мкФ.


Предназначение полярных конденсаторов — фильтрация и выравнивание сигналов. Вывод «плюс» имеет несколько большую длину. Метка «минус» нанесена на корпус

Когда происходит замыкание пластин, выходит тепло. Под его воздействием электролит испаряется, происходит взрыв.

Современные конденсаторы сверху имеют небольшое вдавливание и крестик. Толщина вдавленного участка меньше, чем остальной поверхности крышки. При взрыве его верхняя часть раскрывается наподобие розочки. По этой причине можно наблюдать на торцах корпуса неисправного элемента вспучивание.

Отличия неполярных конденсаторов

Неполярные пленочные элементы имеют диэлектрик в виде стекла, керамики. По сравнению с конденсаторами электролитическими, у них меньший самозаряд (ток утечки). Объясняется это тем, что у керамики сопротивление выше, чем у бумаги.


Соблюдение полярности при включении неполярного конденсатора в схему необязательно. Часто они бывают просто микроскопическими, и в некоторых проектах применяются в больших количествах

Все конденсаторы делят на детали общего назначения и специального, которые бывают:

  1. Высоковольтными. Используют в высоковольтных приборах. Их выпускают в различных исполнениях. Существуют керамические, пленочные, масляные, вакуумные ВВ конденсаторы. От обычных деталей они значительно отличаются и доступ к ним ограничен.
  2. Пусковыми. Применяют в электродвигателях для обеспечения их надежной работы. Они повышают стартовый момент двигателя, например, насосной станции или компрессора при запуске.
  3. Импульсными. Предназначены для создания сильного скачка напряжения и его транзакции на принимающую панель прибора.
  4. Дозиметрическими. Созданы для функционирования в цепях, где уровень токовых нагрузок небольшой. У них очень малый саморазряд, высокое сопротивление изоляции. Чаще всего это элементы фторопластовые.
  5. Помехоподавляющими. Они смягчают электромагнитный фон в большой частотной вилке. Характеризуются незначительной собственной индуктивностью, что позволяет поднять резонансную частоту и расширить полосу сдерживаемых частот.

В процентном соотношении самое большое число выходов деталей из рабочего строя приходится на случаи, когда подают напряжение, превышающее нормативное. Ошибки в проектировании также могут стать причиной неисправности.

Если диэлектрик меняет свои свойства, при этом тоже возникает сбой в работе конденсатора. Это происходит, когда он вытекает, высыхает, растрескивается. Емкость при этом сразу меняется. Измерить ее можно только посредством измерительных приборов.

Как проверить конденсатор мультиметром пошаговая инструкция

На исправность конденсаторы проверить легко. У меня мультиметр модели Mastech MS8260G, у него есть функция измерения емкости конденсаторов. Правда не всех, у этого прибора ограниченный диапазон измерения емкости. Но некоторые конденсаторы он меряет. Если у Вас есть такой мультиметр, то по маркировке определите его емкость и промеряйте далее конденсатор мультиметром.

Если мультиметр показывает емкость такую же (или с отклонением не более 30 %) от той, какая указана на корпусе, то он исправен. Если проверяете полярный электролитический конденсатор, то при измерении нужно соблюдать полярность.

При проверке конденсаторов в высоковольтных устройствах (блоках питания) соблюдайте осторожность. Измерять нужно только полностью разряженный конденсатор

Разрядить его можно замкнув его контакты отверткой, а в отдельных случаях через резистор, чтобы исключить образование искры. Впаивать конденсатор так же нужно полностью разряженным.

Если у Вас стрелочный прибор, то проверяем конденсатор так. Переключаем прибор в режим измерения сопротивления. Подсоединив контакты конденсатора к мультиметру, смотрим на поведение стрелки прибора. Желательно под рукой иметь заведомо исправный конденсатор такой же емкости в качестве эталона .Сравнивая поведение стрелки с эталоном получаем результат:

Еще хотелось бы сказать пару слов о другом замечательном приборе, который идеально подходит для определения исправности большинства конденсаторов. Этот прибор является по сути определителем элементов. Это особенно актуально в наше время, когда по внешнему виду уже бывает трудно определить что за деталь в руках.

Прибор этот недорог, но определяет емкости конденсаторов, их ESR, исправность диодов, транзисторов, катушек, тиристоров, стабилизаторов. И резисторов. Множества резисторов. Есть у этого прибора и площадка для проверки SMD элементов.

Работает прибор от батареи типа «Крона». Площадка в которую вставляется деталь зажимается рычажком, который обеспечивает надежный контакт. Я слегка доработал прибор. Во-первых зажим у меня начал изнашиваться — я уже проверил много выпаянных элементов. Требуются длинные выводы, а у выпаянных деталей выводы уже обрезаны, короткие.

Поэтому я купил несколько разноцветных маленьких зажимов типа «крокодил», припаял их на провода, а провода к контактам с обратной стороны зажима на приборе. Стало удобнее проверять детали, я так раскидал целую коробку выпаянных сопротивлений, диодов, конденсаторов по номиналам. Думаю даже подпаять туда пару щупов — как у обычного мультиметра. А зажим использовать стал иногда — для проверки новых купленных деталей.

Во — вторых пока я проверял детали батарейка подсела. Поэтому я решил и здесь ввести усовершенствования. Не выпаивая разъема для «Кроны» я на те же места подпаял блок питания от какого то приборчика напряжением 9 в и 0,5 А. Можно было приделать и штекер, я его не стал искать, припаял напрямую, а чтобы провода не болтались, использовал стяжки и термоклей:

В — третьих прибор выглядел после распаковки посылки очень хрупким. То ли экономят китайцы, то ли не заморачиваются особо на мелочах. Есть сейчас версии этого прибора в корпусе, но люди все равно дорабатывают.

И я поместил его на пластмассовый корпус на саморезы — благо в плате прибора оказались под них отверстия. Осталось еще придумать прозрачную крышку на дисплей, но пока не подобрал подходящую. В итоге у меня получился вот такой девайс. На видео продемонстрирую его возможности по проверке конденсаторов:

Как проверить конденсатор мультиметром

Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.

Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.

Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ.  Пошаговая инструкция проверки:

  1. Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
  2. Переключатель мультиметра ставится на значение сопротивления.
  3. Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.

Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.

Если значение 1 появилось спустя некоторое время, элемент считается исправным.

Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.

Электролитический

Как следует из названия, электролитические кондеры в алюминиевом корпусе наполнены электролитом между обкладками. Габариты самые разные — от миллиметров до десятков дециметров. Технические характеристики могут превышать таковые у неполярных на 3 порядка и достигать больших величин — единиц mF.

В электролитических моделях появляется дополнительный дефект, связанный с ЭПС (эквивалентным последовательным сопротивлением). Этот показатель еще обозначают аббревиатурой ESR. Такие конденсаторы в схемах с высокими частотами отфильтровывают несущий сигнал от паразитных. Но возможно подавление ЭМП, сильно снижая уровень и играя роль резистора. Это ведет к перегреву конструкции детали.

Из чего складывается ESR:

  • сопротивление обкладок, выводов, узлов соединения;
  • неоднородность диэлектриков, влага, паразитные примеси;
  • сопротивление электролита за счет изменения химических параметров при нагреве, хранении, высыхании.

В сложных схемах показатель ЭПС особенно важен, но измеряется только специальными приборами. Некоторые мастера самостоятельно их изготавливают и используют в связке с обычными мультиметрами.

Керамический

Сначала осматриваем устройство визуально. Особенно внимательно, если в схеме использованы детали, бывшие в употреблении. Но и новые керамические материалы могут быть бракованными. Сразу заметны кондеры с пробоем — потемневшие, вздутые, прогоревшие, с растресканным корпусом. Такие электродетали однозначно выбраковываются даже без инструментальной проверки — ясно, что они неработоспособны или не выдают назначенных параметров. Лучше озаботиться поиском причин пробоев. Даже новые экземпляры с трещиной в корпусе являются «миной замедленного действия».

Пленочный

Пленочные устройства применяются в цепях постоянного тока, фильтрах, стандартных резонансных схемах. Основные неисправности устройств с малой мощностью:

  • снижение рабочих показателей в результате иссыхания;
  • увеличение параметров тока утечки;
  • повышение активных потерь внутри цепи;
  • замыкание на обкладках;
  • потеря контакта;
  • обрыв проводника.

Измерить емкость конденсатора возможно в режиме тестирования. Стрелочные модели реагируют отклонением стрелки со скачком и возвратом к нулю. При небольшом отклонении стрелки диагностируют утечку тока при малой емкости.

Малая эффективность с низким уровнем мощности при большом токе утечки мешает широкому применению данных конденсаторов и не позволяет его потенциалу полностью раскрыться. Поэтому использование этого вида кондеров нецелесообразно.

Что такое конденсатор и зачем нужен?

Промышленность производит конденсаторы самых разных типов, применяемых во многих отраслях. Они необходимы в автомобиле- и машиностроении, радиотехнике и электронике, в приборостроении и производстве бытовой техники.

Конденсаторы — своего рода «хранилища» энергии, которую они отдают при возникновении кратковременных сбоев в питании. Кроме того, определенный вид этих элементов отфильтровывает полезные сигналы, назначает частоту устройств, генерирующих сигналы. Цикл разрядки-зарядки у конденсатора очень быстрый.


Такой электрический компонент, как конденсатор, состоит из пары проводников (токопроводящих обкладок). Между собой они разделены диэлектриком. В цепь, которая пропускает ток постоянного характера, включать его нельзя, поскольку это равнозначно разрыву

В цепи с переменным током обкладки конденсатора поочередно перезаряжаются с частотой протекающего тока. Объясняется это тем, что на зажимах источника такого тока периодически происходит смена напряжения. Результатом таких преобразований является переменный ток в цепи.

Так же как резистор и катушка, конденсатор проявляет сопротивление току переменного характера, но для токов разных частот оно разное. К примеру, хорошо пропуская высокочастотные токи, он одновременно может являться чуть ли не изолятором для низкочастотных токов.

Сопротивление конденсатора связано с его емкостью и частотой тока. Чем больше два последних параметра, тем его емкостное сопротивление ниже.

Обозначения на конденсаторах

От размеров элемента зависит количество данных, характеризующих его параметры. На корпус элемента наносятся обязательные электрические характеристики:

  • ёмкость конденсатора, С;
  • максимальное напряжение, на которое рассчитан элемент, В.

Маркировка конденсаторов

На очень мелких деталях может быть отмечена только ёмкость, по стандарту EIA. Если нарисованы только цифры и буква, то цифры обозначают ёмкость, буквы могут иметь расшифровку, применимую к типу конструкции. При наличии трёх цифр первые две – это ёмкость. Третья цифра, лежащая в пределах 0-6, – это множитель нуля (505 – 55*100000). Когда третья цифра 8, значение умножают на 0,01, если 9 – на 0,1.

К сведению. Буква, обозначающая ёмкость, может стоять как после числового значения, так перед ним и между цифрами. Например, Н15; 1Н5; 15Н. Таким образом, может обозначаться десятичный разряд числа – 0,15нФ; 1,5нФ; 15нФ.

Дополнительно могут быть обозначены значения:

  • тип – конструктивное исполнение;
  • вид тока – постоянный, переменный, AC – DC;
  • рабочая частота, Гц;
  • величина допустимых отклонений ёмкости, %;
  • полярность выводов у электролитических конденсаторов, « + » и « – ».

Обозначения на корпусе электролитического конденсатора

Проверка мультиметром

Наиболее простым, и в то же время доступным способом тестирования является проверка мультиметром. Этот прибор способен измерять различные электротехнические величины, от сопротивления до напряжения и частоты. В частности, он может измерить и емкость конденсатора. Проверка емкости не происходит мгновенно. Тестеру нужно время для того, чтобы зарядить элемент до определенного уровня напряжения, а потом разрядить его. По величине тока разряда и времени производится заключение о емкости.

Измерение емкости

Перед установкой любых элементов в аппаратуру при ремонте или проектировании требуется протестировать их исправность и соответствие заданным параметрам. Поэтому необходимо знать, как проверить емкость конденсатора мультиметром. Нужно выполнить несколько простых действий:

  1. Установить измерительные щупы мультиметра в подходящие отверстия на его корпусе. Черный щуп — в отверстие с маркировкой COM, а красный — в гнездо с надписью Ом, Hz, U.
  2. Выбрать режим проверки конденсаторов ручкой на лицевой панели прибора. Обычно этот режим обозначен условным значком электроконденсатора — двумя параллельными линиями с выводами.
  3. Прикоснуться щупами мультиметра к выводам элемента. При этом на экране тестера должно отобразиться значение его емкости в микрофарадах. Обычно измерительный прибор показывает, в каких величинах производится измерение, либо эти данные есть на его измерительной шкале.
  4. Если полученное значение отличается от номинального более чем на допуск, указанный в описании этого типа электроконденсаторов (может быть от 0,5 до 80%), значит, элемент не должен применяться по назначению.

Знать, как измерить емкость конденсатора мультиметром, необходимо также и при проверке электроприбора на ошибки в работе. Любой электротехнический прибор может начать работать нестабильно, и причиной этого может служить выход из строя одного или нескольких элементов. Если провести измерение емкости используемых в приборе конденсаторов, можно выявить и устранить причину неисправности.

Тест сопротивления

Узнать, произошёл ли пробой элемента, также можно, измерив его сопротивление. Некоторые измерительные приборы не имеют возможности проверять емкость электроконденсаторов. Но такими измерителями все равно можно протестировать аппаратуру, если замерить величину сопротивления между обкладками используемых в ней конденсаторов.

Для этого нужно выполнить все действия, описанные для проверки емкости, но режим измерения нужно выбрать другой — проверку сопротивления. Этот режим обычно обозначен диапазоном измерения в Омах. Для проверки конденсаторов лучше выбрать диапазон, равный 200 Ом. Если при прозвонке элемента выявлено сопротивление ниже 50 Ом, такой элемент подвергся пробою и не может быть использован.

Прозвонить элемент можно также и внутри схемы, непосредственно в аппаратуре. Однако проверка конденсатора мультиметром, не выпаивая ни одну из его ножек, приводит к ошибкам измерения, так как тестируется также и вся остальная схема, находящаяся между измерительными щупами. Поэтому для измерения нужно выпаять хотя бы один из выводов элемента.

Знать, как проверить конденсатор мультиметром, не выпаивая, необходимо при кропотливой проверке электротехнических приборов на возможную неисправность, если точно известно, что неисправность заключается в одном из элементов. При этом следует выпаять одну из ножек каждого элемента и поочередно померить их сопротивление и емкость. Таким образом можно выявить вышедшие из строя элементы.

Проверка конденсатора мультиметром в режиме омметра

Возникновение основных проблем с аппаратурой электронного типа предполагает решение вопроса, связанного с тестированием работоспособности конденсаторного устройства.

Простой визуальный осмотр такого элемента не позволяет получить максимально точные результаты, поэтому актуальной является проверка работы конденсатора при помощи мультиметра.

Проверка конденсатора – подключение к мультиметру

Наиболее доступным и удобным способом тестирования неисправного конденсаторного устройства является использование мультиметра с выставленным режимом омметра.

Как проверить неполярный конденсатор мультиметром

Стандартные устройство неполярного типа выглядит аналогично обычному электролитическому конденсаторному элементу, но для такого вида прибора полярность напряжения не является важной. Такие конденсаторные элементы устанавливаются в схемах, имеющих переменный или пульсирующий ток

Отличить неполярное устройство можно при визуальном осмотре: на корпусе отсутствием маркировка полярности.

Неисправные конденсаторы

Технология проведения тестирования конденсатора неполярного типа в режиме омметра следующая:

  • переключение мультиметра в режим замера показателей сопротивления;
  • установка максимальных пределов из возможно допустимых показателей;
  • подключение измерительных щупов на выводы тестируемого конденсаторного устройства;
  • замер при помощи прибора уровня сопротивления утечки.

Работоспособные кондиционеры не показывают никаких значений, поэтому на дисплее высвечивается единица, свидетельствующая о сопротивлении утечки выше 2.0 мегаом. Фиксация измерительным прибором сопротивления ниже 2.0 мегаом свидетельствует о большой утечке.

Важно помнить, что держать двумя руками конденсаторные выводов и металлические щупы измерительного прибора категорически запрещается, так как в этом случае будут получены некорректные данные тестирования.

Проверка полярного конденсатора

К категории конденсаторных устройств полярного типа относятся электролитические элементы, которые по сравнению с неполярными приборами, подвержены достаточно быстрому процессу старения. При подаче избыточного напряжения устройство может взрываться. Чтобы избежать подобной проблемы, в процессе изготовления на крышку корпуса наносится несколько специальных насечек.

Тестирование полярных конденсаторных элементов электролитического типа посредством омметра имеет несколько важных отличий. Показатели стандартного сопротивления утечки конденсаторного устройства полярного типа, как правило, составляют 100 килoOм или более, поэтому перед выполнением проверки, элемент требуется разрядить, замыкая выводы накоротко. В противном случае значительно возрастает риск поломки измерительного прибора.

Проверка полярного конденсатора

Технология проведения тестирования конденсатора полярного типа в режиме омметра следующая:

  • переключение мультиметра в режим замера показателей сопротивления;
  • установка предела измерения уровня сопротивления на показатели 200К (200000 Ом);
  • фиксация щупов на выводы с соблюдением полярности;
  • измерение прибором уровня сопротивления утечки.

Вне зависимости от модельных особенностей, все разновидности современных конденсаторов электролитического типа обладают достаточно большой емкостью, поэтому в процессе выполнения проверки происходит стандартная подзарядка устройства.

Продолжительность такого процесса составляет всего несколько секунд. При этом отмечается рост изначального уровня сопротивления, который сопровождается увеличением цифровых показателей на дисплее.

Исправность проверяемых устройств оценивается по значениям замеряемого мультиметром сопротивления. Если показатели равны 100 килоОм или более, то конденсатор полярного типа исправен и не потребует замены.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector