Нормы радиации в помещении
Содержание:
Примечания
- Комментарии
- Для сопоставления измеренных величин экспозиционной дозы с эффективной дозой, приведённой в трудах НКДАР, следует использовать следующие коэффициенты: коэффициент соответствия экспозиционной дозы поглощённой дозе 1 Р = 0,873 рад (в воздухе); коэффициент 0,01 перевода из внесистемной единицы Рад в единицу СИ грей; принятый НКДАР коэффициент 0,7 перехода от поглощённой дозы в воздухе к эффективной дозе, получаемой человеком .
- Источники
- ↑ Гусев Н. Г., Климанов В. А., Машкович В. П., Суворов А. П. Защита от ионизирующих излучений. В 2-х томах. M., Энергоатомиздат, 1989
- ↑ Ионизирующие излучения и их измерения. Термины и понятия. М.: Стандартинформ, 2006.
- Моисеев А. А., Иванов В. И. Справочник по дозиметрии и радиационной гигиене. 2-е изд., перераб. и доп. М., Атомиздат, 1974
- Нормы радиационной безопасности (НРБ-99/2009). Минздрав России, 2009.
- Обеспечение жизнедеятельности людей в чрезвычайных ситуациях. Выпуск 1: Чрезвычайные ситуации и их поражающие факторы. — СПб.: Образование; Российский государственный педагогический университет имени А. И. Герцена. — 1992.
- ↑ Зигбан К. (ред.) Альфа-, бета- и гамма-спектроскопия. Пер. с англ. М.: Атомиздат, 1969.
- ↑ Волков Н. Г., Христофоров В. А., Ушакова Н. П. Методы ядерной спектрометрии. М. Энергоатомиздат, 1990.
- Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики. 3-е изд., перераб. и доп. М.: Энергоатомиздат, 1985.
- Главный редактор А. М. Прохоров. Рентген // Физический энциклопедический словарь. — Советская энциклопедия (рус.). — М., 1983. // Физическая энциклопедия
- Радиационная химия // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 200. — ISBN 5-7155-0292-6.
- Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 26. — 240 с. — ISBN 5-7050-0118-5.
- International Commission on Radiological Protection. Publication 60: Recommendations of the International Commission on Radiological Protection.
- (недоступная ссылка). Дата обращения: 13 июня 2015.
- (недоступная ссылка). Дата обращения: 13 июня 2015.
- . Дата обращения: 3 января 2013.
- РМГ 78-2005 ГСИ. Излучения ионизирующие и их измерения. Термины и определения. — М. : Стандартинформ, 2006. — 20 с.
- Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений : Справочник. — 4-е изд. — М. : Энергоатомиздат, 1995. — С. 110—112. — 496 с.
- , p. 84.
- , pp. 87,113.
- , p. 88.
- , p. 86.
- , p. 89.
- , p. 91.
- , pp. 92—93, 116.
- , pp. 91, 121.
- Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений : Справочник. — 4-е изд. — М. : Энергоатомиздат, 1995. — С. 27. — 496 с.
- Голубев Б.П. Дозиметрия и защита от ионизирующих излучений : Для студентов вузов. — 4-е изд. — М. : Энергоатомиздат, 1986. — С. 80. — 464 с.
- , p. 92.
- , p. 5.
Измерение ионизирующих излучений
Методы измерения
См. также: Дозиметр и Детектор элементарных частиц
Исторически первыми датчиками ионизирующего излучения были химические светочувствительные материалы, используемые в фотографии. Ионизирующие излучения засвечивали фотопластинку, помещённую в светонепроницаемый конверт. Однако от них быстро отказались из-за длительности и затратности процесса, сложности проявки и низкой информативности.
В качестве датчиков ионизирующего излучения в быту и промышленности наибольшее распространение получили дозиметры на базе счётчиков Гейгера. Счётчик Гейгера — газоразрядный прибор, в котором ионизация газа излучением превращается в электрический ток между электродами. Как правило, такие приборы корректно регистрируют только гамма-излучение. Некоторые приборы снабжаются специальным фильтром, преобразующим бета-излучение в гамма-кванты за счёт тормозного излучения. Счётчики Гейгера плохо селектируют излучения по энергии, для этого используют другую разновидность газоразрядного счётчика, т. н. пропорциональный счётчик.
Существуют полупроводниковые датчики ионизирующего излучения. Принцип их действия аналогичен газоразрядным приборам с тем отличием, что ионизируется объём полупроводника между двумя электродами. В простейшем случае это обратносмещенный полупроводниковый диод. Для максимальной чувствительности такие детекторы имеют значительные размеры.
Широкое применение в науке получили сцинтилляторы. Эти приборы преобразуют энергию излучения в видимый свет за счёт поглощения излучения в специальном веществе. Вспышка света регистрируется фотоэлектронным умножителем. Сцинтилляторы хорошо разделяют излучение по энергиям.
Для исследования потоков элементарных частиц применяют множество других методов, позволяющих полнее исследовать их свойства, например, пузырьковая камера, камера Вильсона.
Единицы измерения
Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важные показатели взаимодействия ионизирующего излучения с веществом:
- линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества.
- поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества.
В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (русское обозначение: Гр, международное: Gy), численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества. Иногда встречается устаревшая внесистемная единица рад (русское обозначение: рад; международное: rad): доза, соответствующая поглощённой энергии 100 эрг на 1 грамм вещества. 1 рад = 0,01 Гр. Не следует путать поглощённую дозу с эквивалентной дозой .
Также широко применяется устаревшее понятие экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Для этого обычно используют внесистемную единицу экспозиционной дозы рентген (русское обозначение: Р; международное: R): доза фотонного излучения, образующего ионы с зарядом в 1 ед. заряда СГСЭ ((1/3)⋅10−9кулон) в 1 см³ воздуха. В системе СИ используется единица кулон на килограмм (русское обозначение: Кл/кг; международное: C/kg): 1 Кл/кг = 3876 Р; 1 Р = 2,57976⋅10−4 Кл/кг.
Активность радиоактивного источника ионизирующего излучения определяется как среднее количество распадов ядер в единицу времени. Соответствующая единица в системе СИ беккерель (русское обозначение: Бк; международное: Bq) обозначает количество распадов в секунду. Применяется также внесистемная единица кюри (русское обозначение: Ки; международное: Ci). 1 Ки = 3,7⋅1010 Бк. Первоначальное определение этой единицы соответствовало активности 1 г радия-226.
Корпускулярное ионизирующее излучение также характеризуется кинетической энергией частиц. Для измерения этого параметра наиболее распространена внесистемная единица электронвольт (русское обозначение: эВ, международное: eV). Как правило радиоактивный источник генерирует частицы с определённым спектром энергий. Датчики излучений также имеют неравномерную чувствительность по энергии частиц.
Действие ионизирующей радиации
Под ионизирующим излучением понимают разновидность энергии, которую высвобождают атомы. Эта энергия представляет собой электромагнитные волны двух видов:
- гамма-излучение;
- рентгеновское излучение;
- частицы (в виде альфа-, бета-частиц и нейтронов).
Собственно, радиоактивность — не что иное как результат спонтанного распада атомов. При распаде атомов всегда возникает избыток энергии или форма ионизирующего излучения. Уже упоминалось о нестабильности атомного ядра. Те его элементы, которые являются нестабильными, возникают при ядерном распаде и обладают ионизирующим излучением, получили название радионуклидов. В свою очередь, радионуклиды принято идентифицировать на основании типа излучения, испускаемого ими, его энергии и периода полураспада.
Ежедневно мы подвергаемся как естественному, так и искусственному радиационному излучению. Под естественными источниками следует понимать больше 60 веществ, средой обитания для которых служат почва, воздух и вода. Например, образование газа радона в естественных условиях происходит в горных породах. Каждый день мы получаем определённое количество радионуклидов, которые находятся в пище, воде и воздухе.
Если человек находится на слишком большой высоте, на него начинают воздействовать космические лучи. В целом, около 80% дозы радиации, получаемой нами каждый год — это фоновое излучение в виде наземных и космических источников. Уровни радиации в них различны. Иногда они могут составлять в 100 или 200 раз больше средней величины.
Кроме естественных источников ионизирующего излучения, на нас могут воздействовать и источники искусственного происхождения. Прежде всего, это производство ядерной энергии на атомных электростанциях. Медицинская аппаратура, применяемая в диагностических и лечебных целях, тоже является искусственным радиационным источником.
Степень повреждения живого организма радиационным воздействием определяется полученной дозой облучения либо поглощённой дозой. Её выражают в единицах, называемых греями (Гр). Что касается эффективной дозы, применяемой с целью измерения показателей излучения и уровня его вреда, её измеряют в зивертах (Зв). При этом учитывают тип радиационного воздействия и степень чувствительности того или иного органа либо ткани. Измерение уровня радиации в зивертах помогает определить, насколько серьёзным будет нанесённый ею урон.
Зиверт — большая единица, поэтому в целях измерения часто применяют милли- и микрозиверты. Кроме основного показателя радиации (её дозы), с помощью зивертов обозначают и скорость, с которой эта доза выделяется в окружающую среду (к примеру, микрозиверты в час или год).
Различают:
- внутреннее воздействие излучения;
- внешнее воздействие излучения.
Внутреннее воздействие происходит при вдыхании радионуклидов либо их поглощении любым путём. Например, они могут попасть в организм через рану или инъекцию. Прекращение внутреннего воздействия радионуклидов происходит при их самопроизвольном выведении из организма или в процессе лечения.
Внешнее радиационное воздействие происходит при попадании радиации из воздуха на кожные покровы или предметы одежды. Радионуклиды могут попасть через пылевые частицы, аэрозоль или любую жидкость.
Кроме того, воздействие может быть:
- запланированным, например, в результате применения медицинского оборудования в лечебных или диагностических целях. Также к запланированному воздействию относят применение излучения в сферах промышленности и науки;
- в результате действия уже существующих источников. Это радон, обнаруживаемый в жилых домах, либо фоновое излучение. В таких случаях необходимо принимать соответствующие контрольные меры.
И, наконец, последний тип воздействия — при чрезвычайной ситуации, возникшей в результате непредвиденного события. Такие ситуации требуют безотлагательных и экстренных мероприятий, так как речь может идти о ядерном ЧП либо намеренном действии злоумышленников.
Уровни облучения
Уровень излучения определяется в Зивертах – Зв. Нормой для человека считается дозировка от 0 до 0,2 МкЗв/ч. Исследователи создали шкалу опасности радиационных волн.
Шкала:
- 0,005 Зв – норма облучения для человека в год;
- 0,05 Зв – нормальный показатель для обследования медицинскими приборами;
- 0,1 Зв – уровень радиации при добыче урана;
- 0,2 Зв – допускается при работе с веществами, излучающими радиацию;
- 0,3 Зв – получает человек, прошедший рентгеновское обследование желудка;
- 0,75 Зв – доза приводит к некоторым изменениям состава крови;
- 1 Зв – провоцирует возникновение лучевой болезни;
- 4-5 Зв – летальный исход диагностируется в половине всех случаев, смерть наступает спустя несколько месяцев;
- 10-50 Зв – человек, получивший данную дозировку, умирает через несколько недель;
- 100 Зв – излучение подобной силы убивает человека спустя несколько часов, происходит полный отказ работы нервной системы.
Нормы тщательно отслеживают и контролируют на производстве. Не допускается находиться в местах с повышенным показателем радиации.
Что от неё бывает[править]
Если кратко — ничего хорошего. От радиации нельзя стать супергероем, суперзлодеем или существом, превращающим людей в супергероев с помощью укуса. Также от неё не вырастает щупалец, третьих ног и шестых пальцев. А что же от нее можно схватить?
- Лучевую болезнь. Её основные симптомы — это разрушение костного мозга, отравление радиотоксинами
Бывает не только острой (схватил сразу и много), но и хронической (хватал поменьше, но регулярно).
— продуктами расщепления тушки радиацией (обломками белков и жиров, раздолбанных частицами), расстройства пищеварения и нервной системы. Самое опасное в этом списке — первое: костный мозг является кроветворным органом, и при его разрушении производство новых кровяных клеток останавливается и кровь быстро превращается в водицу. Отчего и наступает смерть.
- Рак. Случайное и не гарантированное, но очень неприятное последствие облучения.
- Генные мутации и хромосомные аберрации. Вот они, добрались до самой мякотки. На самом облучённом человеке они в основном никак не проявляются (если проявляются, то всё тем же раком), зато встают в полный рост при рождении потомства. И в большинстве случаев приводят к тому, что ребёнок просто не рождается, а происходит выкидыш или мертворождение. Или рождается, но хронически больной.
- Яички легко поражаются, но после поражения спустя время относительно восстанавливаются (разумеется, шансы на рождения дефектного ребёнка и после «восстановления» не возвращаются к уровню непострадавшего человека). Почему так? Яички находятся вне тела и защищены только тонким слоем кожи. Так природа захотела, ибо спермогенез лучше протекает при температуре ниже температуры тела на градус. Поэтому так популярна шутка о просвинцованных трусах. При этом сам спермогенез — процесс постоянно обновляющийся: в процессе митоза все новые и новые клетки делятся напополам и образуют сперматозоиды. Миллионами. И если яички не были поражены фатально, т. е. до полной неспособности производить сперматозоиды, то шансы произвести здоровое потомство ненамного ниже среднего.
- Яичники трудно поразить, но если уж они поражены — значит, отхватили дозу, от которой не восстановиться. Почему так? Женщина уже рождается с полным набором яйцеклеток. В дальнейшем часть из них будет понемногу созревать и каждый месяц покидать организм по нескольку штук за раз, а часть просто отомрёт, не достигнув созревания. Яичники спрятаны глубоко внутри тела и хорошо защищены — плюс. Минус в том, что клетки тела сами по себе не защита от тяжёлых частиц, и если яйцеклетка разрушится, то новой взять негде, а если под бомбёжку радиацией попал весь орган целиком — то он пострадает невосстановимо. Впрочем, учитывая, что тяжёлое облучение обычно приходится на весь организм, «пострадает невосстановимо» означает ещё и физическую невозможность выносить вообще какого-либо ребёнка и большие-пребольшие проблемы с гормональной системой на всю оставшуюся недолгую жизнь.
Источники радиоактивного излучения
Распространение радиации не ограничивается современными атомными станциями, ядерными энергетическими объектами и линиями электропередач. Излучение находится во всех без исключения природных ресурсах. Даже организм человека уже содержит в себе радиоактивные элементы калий и рубидий. Где еще встречается естественная радиация:
- вторичное космическое излучение. В виде лучей входит в состав фоновой радиации в атмосфере, достигает поверхности Земли;
- солнечная радиация. Направленный поток электронов, протонов и ядер в межпланетном пространстве. Появляются после сильных солнечных вспышек;
- радон. Бесцветный инертный радиоактивный газ;
- природные изотопы. Уран, радий, свинец, торий;
- внутреннее облучение. В продуктах питания чаще всего встречаются радионуклиды, как стронций, цезий, радий, плутоний и тритий.
Деятельность людей постоянно направлена на поиски источников мощной энергии, прочных и надежных материалов, способов точной ранней диагностики и интенсивного эффективного лечения тяжелых заболеваний. Результатом длительных научных исследований и воздействия человека на окружающую среду стала искусственная радиация:
- атомная энергетика;
- медицина;
- ядерные испытания;
- строительные материалы;
- излучение бытовых приборов.
Широкое применение радиоактивных веществ и химических реакций привело к новой проблеме радиационного облучения, которая ежегодно становится причиной онкологических заболеваний, лейкемии, наследственных и генетических мутаций, снижения продолжительности жизни населения и источником экологических катастроф.
Источники радиации
С начала изучения урана и его обращения в изотоп свинца Пьером и Марией Кюри, ученые считали, что радиоактивность – природное качество. Но Фредерик и Ирен Жолио-Кюри открыли радиоактивность ядерных реакций. В XXI в. из более 2000 радионуклидов – 300 имеют естественное происхождение, остальные виды радиации сделаны людьми.
Естественные источники
В единой вселенной не существует отдельных форм энергии, информации, внешнего и внутреннего, категорий причины и следствия, времени и пространства – все это ментальные конструкции человеческого мышления для ориентации в мире.
Природные источники радиации – формы электромагнитных излучений, которые являются неотделимой частью всего на планете – естественным фоном.
Разновидности источников естественного происхождения
Космические источники. Процессы в активных галактиках и взрывы «сверхновых» в нашей, сопровождаются появлением лучей, которые миллионы лет блуждают в пространстве и влетают в атмосферу Земли со скоростями близкими к световым.
Излучение идет от Солнца и от заряженных частиц, вращающихся вокруг планеты. Каждую секунду через 1 кв. м поверхности атмосферы проходят 10 тыс. частиц – 90% протонов (ядер водорода), 9% гелия и 1% почти всех элементов периодической таблицы.
Житель Москвы получает из космоса 0,5 мЗв/год, на вершине Эвереста – 8 мЗв/год.
Земные источники излучения. Природная радиация появляется от гранитных пород гор, базальтов, сланцев, урана-238 и тория-232 с периодом распада миллионы лет и продуктов их полураспада.
Есть геопатогенные зоны с вертикальным излучением альфа, бета и гамма типов, которые не экранируются и не уменьшаются при удалении от поверхности. Исследования разломов коры под населенными пунктами показало, что в некоторых районах смертность в 5-20 раз выше естественной.
Газ радон – продукт превращения радия, источник мифов о злых горных духах, непонятным способом связан с солнечной активностью и пятнами на звезде.
Внутреннее облучение – 60-70% воздействия на организм. Оно происходит от попадающих в тело с пищей, дыханием, повреждениями кожи радиоактивных элементов.
По оценкам ученых 180 мЗв/год человек получает с калием-40, который содержится в продуктах питания (больше всего в какао, горохе, картофеле, говядине).
Искусственные источники
Антропогенное радиационное излучение составляет 2-3% от всей радиации. Но оно часто бывает концентрированным – аварии на АС, атомные взрывы, ускорители, ядерные исследования, захоронения отходов, бытовые источники, и представляет угрозу персоналу, пользователям, населению.
Фосфатные удобрения увеличивают активность урана. Производящие их заводы наполняют местный воздух в 14 раз большим содержанием радионуклидов, чем нормальный фон. Сжигание каменного угля приводит к выбросам в атмосферу калия-40, урана и тория.
Дозу содержат строительные материалы, перераспределяемые людьми из зон с повышенной радиацией.
Облучением подвергаются пациенты при медицинских обследованиях с применением рентгена и радионуклидной диагностики.
Что такое нормальный радиационный фон?
Для Москвы на открытом воздухе все источники радиации вместе не дают более 15-25 мкЗв/час.
В России нормальным считается фон, который соответствует «Нормам радиационной безопасности» (НРБ). Муниципальные органы Госсанэпиднадзора могут разрешить повышение норм не более 100 мЗв/год. 200 мЗв/год допускается распоряжением федерального Госкомсанэпиднадзора.
Переселение жильцов из зданий необходимо, когда мощность γ-излучения не удается снизить меньше 0,6 мкЗв/час.
Норма радиоактивного излучения
Институт медико-биологических проблем формирования здоровья в Москве пришел к выводу, что продолжительность жизни на 20% зависит от состояния здоровья, еще на 20% от окружающей среды, на 10% от уровня медобслуживания и на 50% от образа жизни, режима питания и отдыха. Радиоактивное излучение составляет 5% экологическим проблем цивилизации.
Какие бывают нормы радиоактивности?
Радиоактивное облучение техногенного характера совместно с естественными источниками не должно превышать индивидуальную предельно допустимую дозу (ИПДД).
НРБ – нормы радиационной безопасности, выделяют 2 категории граждан, подвергающихся воздействию радиации.
Категория А – профессиональные сотрудники, которые работают с источниками ионизирующих излучений.
Категория B – часть населения, вынужденная проживать или работать в местах, где могут находиться радиоактивные вещества.
При ликвидации аварий превышение дозовых пределов допускается только ради спасения жизни людей и отсутствия возможности принять меры защиты.
Участвовать в спасательных мероприятиях могут только мужчины старше 30 лет, при их добровольном согласии в письменном виде, после полного информирования о возможных последствиях для здоровья.
В чем заключается опасность радиации?
По результатам проведенных научных экспериментов и исследований, опасность радиации и вред ионизирующего излучения на человека заключается в следующем: заряженные ионы, которые проникают в ткани и части человеческого организма, вступают в постоянное взаимодействие с молекулами, из-за чего последние приобретают положительный заряд и разрывают естественные природные химические связи и крепления.
Почему ионизирующие излучения вредны для человека? По этой причине измененные ионным путем молекулы и ткани человеческого организма могут мутировать, видоизменять свою биологическую структуру, увеличиваться в размерах, провоцировать кровотечения и другие побочные процессы.
По причине усиленного воздействия на человеческий организм ионизирующих веществ у человека могут развиваться онкологические проблемы, множественные опухоли. Также из-за облучения радиацией выпадают волосы, сжигается критическая масса тела, наступает анемия, повреждается костный мозг.
Может ли радиация стать причиной мутации
Многие люди смотрят фантастические фильмы и думают, что радиационное облучение открывает в организме новые супер-способности. На самом деле радиация действительно может привести к мутации, но только она крайне маловероятно будет настолько хорошей, что ее носителя возьмут в ”Люди Х”.
Радиация способна повреждать спирали ДНК. Часто повреждение носит локальный характер и затрагивает только одну нить. В этом случае поврежденные участки могут замещаться нуклеотидами. Если повреждены обе нити, то полностью утрачивается генетическая информация, а клетка может запустить механизм самоуничтожения.
Примерно так и работает лучевая терапия для раковых больных. Даже раковые клетки могут саморазрушаться, если в них произойдут сильные структурные изменения. С другой стороны, обычная клетка может стать раковой, если получит повреждения.
Шутить с радиацией не стоит, но ее надо «знать в лицо» и понимать, как с ней бороться.
Сильно переживать по этому поводу не стоит, если вы соблюдаете элементарные правила безопасности. Например, если вы не находитесь под палящим солнцем без солнцезащитного крема. Фоновая радиация не способна причинить вред человеку, так как он привыкает к ней, но если вы на несколько дней переезжаете в район повышенной радиации, например, поближе к ядерному полигону или в жаркую страну, с этим надо быть очень осторожным. Клетки кожного эпителия могут повредиться. Одним из самых неприятных последствий является развитие меланомы, которая имеет очень плохие прогнозы с точки зрения лечения.
Помните, что мифы о радиации в основном касаются преуменьшения ее вреда
Поэтому берегите себя, более осторожно относитесь к жаркому солнцу, особенно в полдень, когда оно наиболее активно, и держитесь подальше от мест радиационных испытаний и катастроф