Характеристики опилок и их применение

Как избавиться от древесных отходов с выгодой?

Единственный способ получить выгоду – найти того, кто не просто нуждается в опилках и не имеет их постоянного подвоза, но и готов платить за них, а также брать на себя расходы по доставке.

Чтобы их найти, необходимо проводить рекламные компании, используя в качестве площадки тематические форумы, реальные и онлайн доски объявлений, платные и бесплатные газеты, местное радио и телевидение.

Более подробно о ценообразовании и различных способах увеличения прибыли при продаже опилок читайте тут.

Кроме того, вам будет полезна статья, в которой мы рассказывали о различных видах бизнеса, связанного с утилизацией отходов распиливания древесины и переработкой их в полезные и востребованные продукты.

Как уменьшить теплопроводность гипсокартона

Несмотря на то, что у гипсокартона имеется достаточно хорошая собственная теплопроводность и теплоизоляция, многие люди, для достижения еще лучшего результата, используют различные утеплители. Наибольшей популярностью сегодня пользуется минеральная вата и пенопласт.

Чем больше будет зазор между стартовой стеной и гипсокартонными листами, тем более толстый слой утеплителя можно положить в имеющееся пространство. При этом комната станет намного теплее.

Таким образом, использование гипсокартонных листов в связке с любыми теплоизоляционными материалами (пенопласт, минеральная вата, вспененный экструзионный полистирол) позволит вам в разы сократить теплопотери помещения.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Допустимые значения

Выполняя теплотехнический расчет наружной стены, учитывают также и регион, в котором будет располагаться дом:

  • Для южных регионов с теплыми зимами и небольшими перепадами температур можно возводить стены небольшой толщины из материалов со средней степенью теплопроводности – керамический и глиняный обожженный одинарный и двойной, кирпич, пено- и газобетон большой плотности. Толщина стен для таких регионов может быть не более 20 см.
  • В то же самое время для северных регионов целесообразнее и экономически выгоднее строить ограждающие стеновые конструкции средней и большой толщины из материалов с большим термическим сопротивлением – оцилиндрованное бревно, газо- и пенобетон средней плотности. Для таких условий возводят стеновые конструкции толщиной до 50–60 см.
  • Для регионов с умеренным климатом и чередующимися по температурному режиму зимами подходят стены из материалов с высоким и средним значением термического сопротивления – газо- и пенобетон, брус, оцилиндрованное бревно среднего диаметра. В таких условиях толщина стеновых ограждающих конструкций с учетом утеплителей составляет не более 40–45 см.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Преимущества глиняного кирпича

Цифровые обозначения в маркировке по мере их увеличения говорят о лучшем качестве изделия в сравнении с более низкой маркой или классом. Однако иногда целесообразно использовать именно такие экземпляры, чтобы снять нагрузку с других несущих элементов. Очень часто наружные стены из соображений теплозащиты имеют излишнюю, неоправданно завышенную толщину и прочность, и, как следствие, большой вес, который давит и разрушает фундамент. Поэтому вместо полнотелого кирпича целесообразно использовать пористый, пористо-пустотелый или пустотелый, которые обладают меньшим объемным весом и не уступают в прочности своему полнотелому собрату, хотя и имеют меньшую теплопроводность. К тому же они иногда больше по размеру, что снижает расход материала и стоимость 1 кв. м кладки.

Сравнение утеплителей по теплопроводности

Пенополистирол (пенопласт)

Плиты пенополистирола (пенопласта)

Это самый популярный теплоизоляционный материал в России, благодаря своей низкой теплопроводности, невысокой стоимости и легкости монтажа. Пенопласт изготавливается в плитах толщиной от 20 до 150 мм путем вспенивания полистирола и состоит на 99% из воздуха. Материал имеет различную плотность, имеет низкую теплопроводность и устойчив к влажности.

Благодаря своей низкой стоимости пенополистирол имеет большую востребованность среди компаний и частных застройщиков для утепления различных помещений. Но материал достаточно хрупкий и быстро воспламеняется, выделяя токсичные вещества при горении. Из-за этого пенопласт использовать предпочтительнее в нежилых помещениях и при теплоизоляции не нагружаемых конструкций — утепление фасада под штукатурку, стен подвалов и т.д.

Экструдированный пенополистирол

Пеноплэкс (экструдированный пенополистирол)

Экструзия (техноплэкс, пеноплэкс и т.д.) не подвергается воздействию влаги и гниению. Это очень прочный и удобный в использовании материал, который легко режется ножом на нужные размеры. Низкое водопоглощение обеспечивает при высокой влажности минимальное изменение свойств, плиты имеют высокую плотность и сопротивляемость сжатию. Экструдированный пенополистирол пожаробезопасен, долговечен и прост в применении.

Все эти характеристики, наряду с низкой теплопроводностью в сравнении с прочими утеплителями делает плиты техноплэкса, URSA XPS или пеноплэкса идеальным материалом для утепления ленточных фундаментов домов и отмосток. По заверениям производителей лист экструзии толщиной в 50 миллиметров, заменяет по теплопроводности 60 мм пеноблока, при этом материал не пропускает влагу и можно обойтись без дополнительной гидроизоляции.

Минеральная вата

Плиты минеральной ваты Изовер в упаковке

Минвата (например, Изовер, URSA, Техноруф и т.д.) производится из натуральных природных материалов – шлака, горных пород и доломита по специальной технологии. Минеральная вата имеет низкую теплопроводность и абсолютно пожаробезопасна. Выпускается материал в плитах и рулонах различной жесткости. Для горизонтальных плоскостей используются менее плотные маты, для вертикальных конструкций используют жесткие и полужесткие плиты.

Однако, одним из существенных недостатков данного утеплителя, как и базальтовой ваты является низкая влагостойкость, что требует при монтаже минваты устройства дополнительной влаго- и пароизоляции. Специалисты не рекомендуют использовать минеральная вату для утепления влажных помещений – подвалов домов и погребов, для теплоизоляции парилки изнутри в банях и предбанников. Но и здесь ее можно использовать при должной гидроизоляции.

Базальтовая вата

Плиты базальтовой ваты Роквул в упаковке

Данный материал производится расплавлением базальтовых горных пород и раздуве расплавленной массы с добавлением различных компонентов для получения волокнистой структуры с водоотталкивающими свойствами. Материал не воспламеняется, безопасен для здоровья человека, имеет хорошие показатели по теплоизоляции и звукоизоляции помещений. Используется, как для внутренней, так и для наружной теплоизоляции.

При монтаже базальтовой ваты следует использовать средства защиты (перчатки, респиратор и очки) для защиты слизистых оболочек от микрочастиц ваты. Наиболее известная в России марка базальтовой ваты – это материалы под маркой Rockwool. При эксплуатации плиты теплоизоляции не уплотняются и не слеживаются, а значит, прекрасные свойства низкой теплопроводности базальтовой ваты со временем остаются неизменными.

Пенофол, изолон (вспененный полиэтилен)

Пенофол и изолон – это рулонные утеплители толщиной от 2 до 10 мм, состоящие из вспененного полиэтилена. Материал также выпускается со слоем фольги с одной стороны для создания отражающего эффекта. Утеплитель имеет толщину в несколько раз тоньше представленных ранее утеплителей, но при этом сохраняет и отражает до 97% тепловой энергии. Вспененный полиэтилен имеет длительный срок эксплуатации и экологически безопасен.

Изолон и фольгированный пенофол – легкий, тонкий и очень удобный в работе теплоизоляционный материал. Используют рулонный утеплитель для теплоизоляции влажных помещений, например, при утеплении балконов и лоджий в квартирах. Также применение данного утеплителя поможет вам сберечь полезную площадь в помещении, при утеплении внутри. Подробнее об этих материалах читайте в разделе «Органическая теплоизоляция».

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана;
e{\displaystyle e} — заряд электрона;
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как

ϰ=ik3π32d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым/

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см

Теплопроводность – что это такое

Теплопроводностью называется способность всех видов газов, жидкости или материалов передавать тепло. Это значит, что когда объект нагревается с одной стороны, он трансформируется в теплопроводник, т.к. передает свою энергию дальше. При охлаждении процесс происходит также.

Например, если во время приготовления пищи перемешивать продукты деревянной лопаткой, то изменений в температуре не последует. Но, если для этих целей использовать кухонную утварь из металла, то она быстро нагреется так, что держать ее станет в руке невозможно. Таких примеров теплопроводности привести можно немало.

Объяснение этого с точки зрения физики: тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. Причем ей требуется время, чтобы пройти через стройматериал. Чем больше его нужно, тем ниже скорость передачи тепла.

Внимание!

Если температура по обе стороны используемого материала одинаковая, то переход тепловой энергии не состоится.

Так,

  • теплопроводность кирпича и стали составляет 0,56 и 58Вт/м●К соответственно;
  • древесины – 0,09-0,1;
  • песка – 0,35

Можно заметить, что не все материалы обладают одинаковой теплоэффективностью, это зависит от факторов:

  1. Пористая структура свидетельствует о ее неоднородности и наличии воздуха в порах.
  2. Структура пор – небольшие размеры и их замкнутость приводит к снижению теплового потока.
  3. Плотность – чем она выше, тем больше коэффициент проводимости тепла.
  4. Влажность – негативный фактор, который повышает скорость теплопередачи. Поэтому надо качественно произвести гидроизоляцию сооружения, правильно сделать вентиляцию и использовать влагоустойчивые стройматериалы.

Формула теплопроводности создана с учетом воздействия температуры на это свойство материала. Выглядит она так:

λ=λ0●(1+b●t), где

  • λ0 — коэффициент теплопроводности при 0°С, измеряется который в Вт/м●℃;
  • b – справочная величина температуры;
  • t – непосредственно температура.

Коэффициент теплопроводности

Зачастую в паспорте стройматериалов указан коэффициент теплопроводности – единица измерения которого Вт/(м●℃). Она характеризует любой материал как проводник тепла. В формуле она определяется греческой буквой λ.

Внимание!

Часто в формулах можно увидеть не градусы по Цельсию, а по Кельвину, обозначающиеся как K. Суть от этого не меняется.

Данный коэффициент демонстрирует способность используемого материала передавать тепло на определенную дистанцию за время. При этом показатель определяет именно сырье, а его размеры значения не имеют.

Рассчитать коэффициент теплообмена можно для материала строительного и иного назначения. Например, коэффициент теплоотдачи стали использовать как теплоотвод или теплообменник. Но для больше части стройматериалов ситуация обратная – чем меньше этот показатель для стен, тем меньше тепла здание потеряет зимой.

Сопротивление теплопередаче

Коэффициент теплопередачи – это показатель, характеризующий используемый материал. Но, как показывает практика, лучше оперировать какой-то величиной, которая будет описывать теплопроводные способности определенного сооружения. Иными словами, учитываться должны особенности его строения и параметров.

Термическое сопротивление – это и есть такая величина. Можно считать, что она обратная коэффициенту теплопроводности и учитывающая толщину стройматериала. Для этого показателя существует следующее обозначение – R. Формула при этом выглядит следующим образом:

R = h/λ, где

  • R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²•℃/Вт;
  • h — толщина этого слоя в метрах;
  • λ — коэффициент теплопроводности материала конструкции, Вт/(м•℃).

Часто стены сооружают многослойными, один слой при этом – утеплитель с низким коэффициентом теплопроводности. Благодаря такому подходу нужный показатель повышается. Это связано с тем, что надо прибавить все слои сопротивления теплопередаче, из которых состоит ограждающая конструкция. Не стоит забывать и о суммировании приграничных слоев воздуха внутри и снаружи сооружения.

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Таблица теплопроводности материалов на Пли-

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)
50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300

Гипсокартон с минимальной теплопроводностью

Последнее время на рынке появился новый материал – “теплый гипсокартон”. Он выпускается нескольких видов. Утеплитель приклеивают к одному листу ГКЛ либо закреплен между двумя. Используется как для наружных, так и внутренних работ. Толщина плит с одним слоем достигает 60 мм, двухслойный до 100 мм, размер 1200 х 2500 мм. Основная сфера применения: быстровозводимые конструкции, летние дачные дома, подсобные помещения. Внутри зданий его приклеивают к стенам. В качестве утеплителя чаще используют полистирол, толщина слоя варьируется в зависимости от его ширины. Основным преимуществом материала является низкая теплопроводность и высокая скорость монтажа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector