Теплопроводность металлов и сплавов: от чего зависит коэффициент, указываемый в таблицах

Содержание:

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Коэффициент теплопроводности для металлов и неметаллических твердых материалов

Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.

В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):

  • сталь — 47-58 в зависимости от марки стали;
  • алюминий — 209,3;
  • бронза — 116-186;
  • цинк — 106-140 в зависимости от чистоты;
  • медь — 372,1-385,2;
  • латунь — 81-116;
  • золото — 308,2;
  • серебро — 406,1-418,7;
  • каучук — 0,04-0,30;
  • стекловолокно — 0,03-0,07;
  • кирпич — 0,80;
  • дерево — 0,13;
  • стекло — 0,6-1,0.

Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.

Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/п Материал стены Теплопроводность, Вт/м·°C Толщина стены, мм
Требуемая Допустимая
1 Газобетонный блок 0,14 444 270
2 Керамзитобетонный блок 0,55 1745 1062
3 Керамический блок 0,16 508 309
4 Керамический блок (тёплый) 0,12 381 232
5 Кирпич (силикатный) 0,70 2221 1352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям

Стена из газобетонного блока

1 Газобетонный блок D600 (400 мм) 2,89 Вт/м·°C
2 Газобетонный блок D600 (300 мм) + утеплитель (100 мм) 4,59 Вт/м·°C
3 Газобетонный блок D600 (400 мм) + утеплитель (100 мм) 5,26 Вт/м·°C
4 Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,20 Вт/м·°C
5 Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,88 Вт/м·°C

Стена из керамзитобетонного блока

1 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) 3,24 Вт/м·°C
2 Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,21 Вт/м·°C

Стена из керамического блока

1 Керамический блок (510 мм) 3,20 Вт/м·°C
2 Керамический блок тёплый (380 мм) 3,18 Вт/м·°C
3 Керамический блок (510 мм) + утеплитель (100 мм) 4,81 Вт/м·°C
4 Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,62 Вт/м·°C

Стена из силикатного кирпича

1 Кирпич (380 мм) + утеплитель (100 мм) 3,07 Вт/м·°C
2 Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,05 Вт/м·°C

«Виды теплопередачи: теплопроводность, конвекция, излучение»

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.  Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Следующая тема: «Количество теплоты. Удельная теплоёмкость».

Теплопроводность неорганических газов в зависимости от температуры

В таблице даны значения теплопроводности неорганических газов в зависимости от температуры при нормальном атмосферном давлении. Значения теплопроводности газов указаны при температуре от 80 до 1500 К (-193…1227 °С).

В таблице приведена теплопроводность следующих газов: закись азота N2O, сера шестифтористая SF6, оксид азота NO, сероводород H2S, аммиак NH3, серы диоксид SO2, водяной пар H2O, диоксид углерода CO2, пар тяжелой воды D2O, оксид углерода CO, воздух.

Следует отметить, что теплопроводность неорганических газов увеличивается с ростом температуры газа.

Примечание: Теплопроводность газов в таблице указана с множителем 10 3 . Не забудьте разделить на 1000!

Особенности теплопроводности готового строения

Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

Утепление построек из бетона или камня повышает комфортные условия внутри здания

Разновидности утепления конструкций

Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

Особенности монтажа теплоизолирующего материала с внутренней стороны

Неорганические материалы и изделия волокнистые теплоизоляционные материалы

Минеральная вата

Любой волокнистый утеплитель, получаемый из минерального сырья ( мергелей, доломитов, базальтов и др.) Минеральная вата высокопористая (до 95% объема занимают воздушные пустоты), поэтому у нее высокие теплоизоляционные свойства. Вот эту схемка поможет Вам разобраться в названиях материалов:

Волокно, которое получают из расплава, скрепляется в изделие с помощью связующего, (чаще всего это фенолформальдегидная смола). Есть изделия, которые называются прошивные маты – в них материал зашивается в стеклоткань и прошивается нитками.

Таблица 1. Виды теплоизоляционных изделий и их характеристики

Минеральная вата занимает одно из первых мест среди теплоизоляции, связано это с доступностью сырья для ее производства, несложной технологией получения, и как следствие — доступной ценой. О ее теплопроводности сказано выше, отмечу следующие ее достоинства:

  • Не горит;
  • Мало гигроскопична ( при попадании влаги тут же ее отдает, главное — обеспечить вентиляцию);
  • Гасит шум;
  • Морозостойкая;
  • Стабильность физических и химических характеристик;
  • Длительный срок эксплуатации.

Недостатки:

  • При попадании влаги теряет теплоизолирующие свойства.
  • Требует пароизоляционной и гидроизоляционной пленки при монтаже.
  • Уступает по прочности (например, пеностеклу).

Маты и плиты из базальтовой ваты

• Высокие теплоизолирующие свойства;

• Выдерживает высокие температуры, не теряя теплоизолирующие свойства;

Базальтовая вата

Таблица 2. Применение базальтовой ваты и ценообразование

За основу брались средние цены на вату европейского производства.

Стекловата

Производят ее из волокна, которое получают из того же сырья, что и стекло (кварцевый песок, известь, сода).

Стекловата

Выпускают в виде рулонных материалов, плит и скорлуп (для трубной изоляции). В целом ее достоинства такие же (см. минеральная вата). Она прочнее базальтовой ваты, лучше гасит шум.

Недостаток температуростойкость стекловаты 450°С, ниже, чем у базальтовой (речь идет о самой вате, без связующего). Эта характеристика важна для технической изоляции.

Таблица 3. Характеристика стекловаты и ее ценообразование

За основу брались средние цены на стекловату европейского производства.

Пеностекло (ячеистое стекло)

Производят его путем спекания стеклянного порошка с газообразователями ( например известняком). Пористость материала 80-95%. Это обуславливает высокие теплоизоляционные свойства пеностекла.

Пеностекло

Достоинства пеностекла:

  • Очень прочный материал;
  • Водостойкий;
  • Несгораемый;
  • Морозостойкий;
  • Легкий при механической обработке, в него даже можно вбивать гвозди;
  • Срок его службы практически неограниче;
  • Его «не любят» грызуны
  • Оно биологически стойкое и химически нейтральное.

Паронепроницаемость пеностекла — так как оно не «дышит» , это нужно учитывать, при обустройстве вентиляции. Также его «минус» это цена, оно дорогое. Поэтому оно и применяется в основном на промышленных объектах для плоских кровель (там где нужна прочность, и где оправдываются денежные затраты на такую теплоизоляцию). Выпускают в виде блоков и плит.

Таблица 4. Характеристика пеностекла

Кроме перечисленных материалов, есть еще целый ряд материалов, которые также относят к данной группе материалов неорганических теплоизоляционных материалов.

Теплоизоляционные бетоны бывают: газонаполненные (пенобетон, ячеистый бетон, газобетон) и на основе легких заполнителей (керамзитобетон, перлитобетон, полистиролбетон и т.п.).

Засыпная теплоизоляция (керамзит, перлит, вермикулит ). Отличается высоким водопоглощением, неустойчива к вибрации, может дать усадку со временем, что приводит к образованию пустот, требует высоких затрат при монтаже. У нее есть и плюсы, например: керамзит обладает высоким уровнем морозоустойчивости и прочности. Стоимость керамзита — 350 грн/м3.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Конструкционные материалы и их теплопроводность

Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.

Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.

Бетон

  • Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
  • Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.

Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.

Железобетон

  • Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
  • Теплопроводность: 1,69 Вт/м*К.

Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.

Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.

Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.

Керамзитобетон

Полнотелые керамзитобетонные блоки производятся с помощью вибропрессования. Не имеют пустот и отверстий. Часто используются для кладки несущих стен или закладки фундамента.

Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.

Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.

  • Плотность: 500 кг/м³–1 800 кг/м³.
  • Теплопроводность: 0,14–0,66 Вт/м*К.

Газобетон

Изготавливается из газосиликата. С помощью специализированных газообразователей внутри блока формируют приблизительно сферические поры (пустоты), их диаметр 1–3 мм.

  • Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
  • Теплопроводность: 0,1–0,3 Вт/м*К.

Пенобетон

Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.

  • Плотность: 600–1 000 кг/м3.
  • Теплопроводность: 0,1–0,38 Вт/м*К.

Изготавливается из глины и наполнителя.

  • Плотность: 500 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,1–0,4 Вт/м*К.

Керамический кирпич

Изготавливается из обожжённой глины.

  • Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
  • Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.

Изготавливается из песка и извести.

  • Плотность: 1 100 кг/м³–1 900 кг/м³;
  • Теплопроводность: 0,81–0,87 Вт/м*К.

Дерево

  • Плотность: 150 кг/м³–2 100 кг/м³;
  • Теплопроводность: 0,2–0,23 Вт/м*К.

Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.

Или почитайте ЗДЕСЬ о несъемной опалубке из пенополистирола.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector