Драйверы для светодиодных ламп. виды, типы какие лучше?
Содержание:
- Регулировка яркости
- Линейные драйверы светодиодов
- Разновидности блоков питания
- В чем отличия между драйвером для светодиодов и блоком питания для led ленты
- Принцип работы
- Теоретическое обоснование
- ZXLD1350
- Питание светодиодов: основные виды
- Критерии выбора
- Ремонт светодиодной лампы
- Принцип работы
- AL9910
- Причины выхода из строя
- Что такое драйверы для светодиодов и зачем они нужны
- Сборка и настройка драйвера
- Характеристики драйверов, их отличия от блоков питания LED ленты.
- Готовые микросхемы преобразователей тока для светодиодных светильников
- Ремонт драйвера (LED) лампы
- Как проверить драйвер светодиодной лампы
- Выводы и полезное видео по теме
Регулировка яркости
Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.
Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.
Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.
Линейные драйверы светодиодов
Компания Maxim выпускает линейные и импульсные драйверы светодиодов. Выходной каскад линейных драйверов представляет собой генератор тока на полевом транзисторе с p-каналом. Структура и типовая схема включения линейного драйвера показана на рис. 3.
Рис. 3. Типовая схема включения и структура линейного драйвера
Ток через последовательно включенные светодиоды задается резистором RSENSE (датчиком тока). Падение напряжения на этом резисторе определяет выходное напряжение дифференциального усилителя DIFF AMP, поступающее на неинвертирующий вход регулирующего усилителя IREG. Регулирующий ОУ сравнивает напряжение ошибки с опорным, формируя на своем выходе потенциал для управления полевым транзистором с p-каналом, работающим в линейном режиме, поэтому рассматриваемые драйверы проигрывают в эффективности импульсным. Однако линейные драйверы обладают простотой применения, низкой ценой и минимальными электромагнитными излучениями (ЭМИ).
В некоторых приложениях (например, в автомобильных) цена и простота применения имеют определяющее значение при выборе светодиодного драйвера. Основные параметры линейных драйверов светодиодов приведены в таблице 1.
Таблица 1. Линейные драйверы мощных светодиодов (Linear HB LED drivers)
Наименование | Области применения | Uвх, В | Iвых.макс., А | ШИМ-димминг (PWM-Dimming) | Корпус | ||
---|---|---|---|---|---|---|---|
Автомобильные приложения | Общее применение |
Подсветка дисплея |
|||||
MAX16800 | Да | Да | 6,5…40 | 0,35 | 1:30 | 16-TQFN | |
MAX16803 | Да | Да | 6,5…40 | 0,35 | 1:200 | 16-TQFN | |
MAX16804/05/06 | Да | Да | 5,5…40 | 0,35 | 1:200 | 20-TQFN | |
MAX16815 | Да | Да | 6,5…40 | 0,1 | 1:100 | 6-TDFN | |
MAX16823 | Да | Да | 5,5…40 | 0,1/канал | 1:200 | 16-TQFN; 16-TSSOP | |
MAX16824 | Да | Да | Да | 6,5…28 | 0,15/канал | 1:5000 | 16-TSSOP |
MAX16825 | Да | Да | Да | 6,5…28 | 0,15/канал | 1:5000 | 16-TSSOP |
MAX16828 | Да | Да | 6,5…40 | 0,2 | 1:100 | 6-TDFN | |
MAX16835 | Да | Да | 6,5…40 | 0,35 | 1:80 | 16-TQFN | |
MAX16836 | Да | Да | 6,5…40 | 0,35 | 1:80 | 16-TQFN | |
MAX16839 | Да | Да | 5…40 | 0,1 | 1:200 | 6-TDFN; 8-SO |
Большинство из них имеют диапазон входных напряжений 6,5…40 В. Максимальные значения выходных токов составляют 0,1…0,35 А. Каждая микросхема из таблицы 1 допускает импульсное регулирование выходного тока (ШИМ-димминг)
Управлять яркостью светодиодов можно с помощью регулировки скважности импульсов, формируемых таймером ICM7555. Рекомендуемая для этого производителем схема приведена на рис. 4
Параметры внешних компонентов для ШИМ-последовательности импульсов, формируемой таймером, приведены в соответствующей документации для ICM7555.
Рис. 4. Управление яркостью светодиодов с помощью таймера ICM7555
На рис.5 приведена рекомендуемая производителем схема для защиты мощных светодиодов от перегрева с помощью термистора NTC. Ток ограничения через светодиоды рассчитывается по формуле: ILED = [VSENSE — [R2/(R2+ R1)] V5]/R1, где V5- выходное напряжение 5В от встроенного стабилизатора напряжения. Такая несложная доработка схемы позволит исключить возможность выхода из строя дорогих светодиодов из-за недопустимо высокой температуры корпуса, ведь даже небольшое превышение максимально допустимой температуры резко сокращает их срок службы.
Рис. 5. Защита светодиодов от перегрева с помощью термистора
На рис. 6 показан способ увеличения выходного тока драйвера с помощью внешнего биполярного транзистора. Следует отметить, что в этом случае светодиоды подключаются между входом источника питания и коллектором биполярного транзистора, а это не всегда удобно.
Рис. 6. Увеличение тока драйвера с помощью внешнего биполярного транзистора
Схема для увеличения выходного тока, показанная на рис. 7, свободна от этого недостатка. Катод нижнего по схеме светодиода подключается непосредственно к общему проводу, что в большинстве случаев гораздо предпочтительнее предыдущего варианта, показанного на рис. 6, когда на катоде нижнего светодиода всегда присутствует ненулевой потенциал. Большинство микросхем линейных драйверов из таблицы 1 допускают рассмотренные варианты увеличения выходного тока. В качестве примера на рисунках 6 и 7 приведена микросхема MAX16803.
Рис. 7. Параллельное включение двух драйверов для увеличения выходного тока
Разновидности блоков питания
Рассмотрев устройство блока питания светодиодной лампы, нужно обратить внимание на разновидности подобных приборов. Они могут быть трансформаторными или импульсными
Они отличаются устройством и принципом работы.
Так, в основе трансформаторного блока применяется трансформатор. Это прибор понижающего типа. Напряжение для любой лампы светодиодного типа нужно понижать с 220 В до 12 В или иного нужного значения. Только после этого ток подается на выпрямитель. Любая светодиодная лампа работает от постоянного тока.
Преимуществом трансформаторных разновидностей приборов является простота их конструкции. Они способны выдержать нагрузку в режиме холостого хода и имеют развязку от бытовой сети. Однако у представленной разновидности блока имеются и недостатки. Основными из них являются малый КПД (50-70%), а также чувствительность системы к перегрузкам.
Импульсный блок питания для светодиодных ламп также имеет в своей конструкции трансформатор. Но в этом случае он работает на более высоких частотах. Поэтому его вес и размер в несколько раз меньше. Обычный трансформаторный блок питания работает на частоте 50 Гц. Он значительно габаритнее. КПД импульсного прибора составляет 70-80%.
В импульсных разновидностях прибора также присутствует развязка от сети. Этот прибор также чувствителен к перегрузкам, но при этом может перестать функционировать даже при холостом ходе. Такой прибор при значительной перегрузке может воспламеняться.
В чем отличия между драйвером для светодиодов и блоком питания для led ленты
Вопрос о том отличаются ли между собой led-driver для светодиодной лампы и ленты, волнует всех тех, кто своими руками желает сделать подсветку из расходных материалов. Ответить на него можно лишь, предварительно разобравшись, что собой представляет лэд-полоска, из каких элементов она состоит и как все это работает.
Обычная лед-лента – это набор светодиодов, соединенных между собой в один или несколько рядов по электросхеме и закрепленные на специальной эластичной подложке. В свою очередь внутри они разбиты на группы по 3 или 6 кристаллов. Все они соединены через токоограничитель-резистор по последовательной цепочке. При этом группы между собой имеют параллельное подключение.
Рабочее напряжение для лед-полосок имеет значение в 12 или 24 вольта. При этом вся лента разделена на секции. В каждой из них есть свой резистор – для ограничения и стабилизации тока. Таким образом, в задачу блока питания входит преобразование выходного напряжения строго до 12 или 24 вольт – ни больше и не меньше. Именно в этом и состоит отличие от обычного led-driver, который может быть рассчитан на любое другое рабочее напряжение (как правило, это диапазон, например, от 8 до 13 вольт). При этом драйвер лед-ленты совсем не следит за параметрами выходящего тока – это задача резисторов в каждой группе светодиодов.
Принцип работы
Преобразователь выступает источником тока. Разберемся в отличиях изделия от блока питания — источника напряжения.
На выходе каждого преобразователя напряжения имеем определенное напряжение, которое не связано с нагрузкой. К примеру, если подключить к блоку питания 12 В сопротивление 40 Ом, через него будет идти ток 300 мА. Если установить два резистора параллельно, то в сумме получится ток 600 мА, хотя напряжение останется идентичным.
Что касается драйвера, он дает одинаковый ток, несмотря на изменяющееся в меньшую или большую сторону напряжение. Возьмите резистор 30 Ом и соедините его с драйвером на 225 мА. Напряжение упадет до 12 В. Если выполнить коммутацию двух параллельно соединенных резисторов по 30 Ом каждый, ток все равно останется равным 225 мА, но напряжение уменьшится вдвое — до 6 В.
Отсюда вывод: качественный драйвер гарантирует нагрузке заданный выходной ток независимо от изменяющегося напряжения. В результате led-диод при подаче напряжения 5 В будет светить одинаково ярко в сравнении с источником питания на 10 В при условии сохранения идентичного тока.
Теоретическое обоснование
Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.
Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.
Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.
Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.
ZXLD1350
Не смотря на то, что эта микросхема является очередным клоном , некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.
Вот главные отличия:
- микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
- максимальный ток нагрузки — 350 мА;
- сопротивление выходного ключа в открытом состоянии — 1.5 — 2 Ома;
- изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
- если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;
Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:
R = 0.1 / ILED
Минимальное сопротивление резистора — 0.27 Ом.
Типовая схема включения ничем не отличается от своих собратьев:
Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае — мгновенно выйдет из строя.
Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему.
Стоимость микросхемы неоправданно высокая (посмотреть), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.
Питание светодиодов: основные виды
Блок питания для светодиодов может использоваться в широком диапазоне рабочих температур от -40оС до +50оС. А благодаря встроенному корректору коэффициента мощности устройство обеспечивает качественное потребление электроэнергии.
Многие производители оснащают устройства питания светодиодов регулятором выходного тока, благодаря которому можно световой поток светодиодов. В случае короткого замыкания сработает специальная защита, однако когда причина аварии будет устранена, устройство автоматически продолжит работать в нормальном режиме. .
Срок службы LED драйверов может достигать 15 лет, а гарантийный срок составляет 24 месяца. В нашей компании вы можете купить блоки питания для обычных и мощных светодиодов, а также любые драйверы для светодиодов по наиболее выгодной цене. Если при заказе их не окажется на складе, устройства будут изготовлены в течение месяца.
Критерии выбора
Сразу хочется отметить, что резистор – это не альтернатива драйверу для светодиода. Он никогда не защитит от импульсных помех и перепадов в питающей сети. Любое изменение входного напряжения пройдёт через резистор и приведет к скачкообразному изменению тока из-за нелинейности ВАХ светодиода. Драйвер, собранный на базе линейного стабилизатора – тоже не лучший вариант. Низкая эффективность сильно ограничивает его возможности.
Выбирать LED-драйвер нужно только после того, как будет точно известно количество и мощность подключаемых светодиодов.
Касаемо технических параметров, то на корпусе LED-драйвера обязательно должно быть указано:
- мощность;
- рабочий диапазон входного напряжения;
- рабочий диапазон выходного напряжения;
- номинальный стабилизированный ток;
- степень защиты от влаги и пыли.
Очень привлекательны бескорпусные драйверы с питанием от 12 В и 220 В. Среди них существуют разные модификации, в которых можно подключать как один, так и несколько мощных светодиодов. Такие устройства удобны для проведения лабораторных исследований и экспериментов. Для домашнего использования всё равно придётся поместить изделие в корпус. В итоге денежная экономия на плате драйвера открытого типа достигается в ущерб надежности и эстетики.
Кроме подбора драйвера для светодиода по электрическим параметрам, потенциальный покупатель должен четко представлять условия его будущей эксплуатации (место размещения, температура, влажность). Ведь оттого, где и как будет установлен драйвер, зависит надёжность всей системы.
Ремонт светодиодной лампы
Для замены деградировавших, на AliExpress были заказаны новые светодиоды у этого продавца
.
Отпаять старые светодиоды с платы проще всего посредством фена паяльной станции (температура около 300 °С). Можно и паяльником, но придется повозиться, изготовив специальную «вилочку для пайки светодиодов». Плата весьма теплоемкая и отбирает часть тепла на себя, поэтому паяльник менее 100 Вт можно даже не рассматривать.
Убрав старые светодиоды, не прекращая подогрева снизу платы, наносим на места пайки флюс, при необходимости припой, и размещаем новые светодиоды, соблюдая полярность.
Предварительно, выводы новых светодиодов также не помешает залудить. А для удобства их последующего позиционирования на плате, отметить, например анод, маркером.
Номинальные данные приобретенных светодиодов: ток 150 мА, напряжение 3,0 – 3,2 В, теплого, белого свечения 2800 – 3500 К.
Сборка осуществляется в обратном порядке. При наличии термопасты наносим ее на обратную сторону платы.
После этого работоспособность светодиодной лампы можно проверить, включив ее на несколько часов.
Не смотрите на горящие светодиоды не защищенным глазом, это опасно для зрения. Накройте их листом бумаги!
Если все нормально, все группы светодиодов светятся равномерно и не мигают, можно приклеить на место стеклянный плафон. Лучше использовать для этого клей типа «Момент». Термоклей не годится, при нагреве лампы во время работы, он может расплавиться и плафон отклеиться и упадет.
После высыхания клея светодиодная лампа снова будет служить вам верой и правдой. Ну а если вдруг, что, вы уже знаете, как ее починить.
Принцип работы
Основное назначение led-driver – поддержка стабильности силы выходящего тока. Производимые сегодня драйверы для лэд-элементов в большинстве своем собираются на принципе работы широтно-импульсных преобразователей. В их состав входят импульсный трансформатор и стабилизирующие электрический ток микросхемы. Такие устройства рассчитаны на питание от бытовой сети с напряжением в 220 вольт, характеризуются высоким показателем КПД и имеют специальный предохранитель от перегрузки и короткого замыкания.
Существуют также led-driver линейного типа. Принцип его действия основан на стабилизации тока при его прохождении через транзистор с р-каналом. В отличие от вышеописанной модификации он является более дешевым, простым и низкоэффективным аналогом. В ходе эксплуатации такие драйверы могут сильно нагреваться, и потому не применяются для схемы с мощными светодиодными элементами.
AL9910
Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).
Вот ее основные характеристики:
- входное напряжение — до 500В (до 277В для переменки);
- встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
- возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
- встроенная защита от перегрева (срабатывает при 150°С);
- рабочая частота (25-300 кГц) задается внешним резистором;
- для работы необходим внешний полевой транзистор;
- выпускается в восьминогих корпусах SO-8 и SO-8EP.
Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.
Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.
Стоимость микросхем — около 60 руб/шт.
Типовая схема включения (без диммирования) выглядит так:
Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:
Rsense = 0.25 / (ILED + 0.15⋅ILED)
Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.
Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:
fosc = 25 / (Rosc + 22), где Rosc — сопротивление в килоомах (обычно от 75 до 1000 кОм).
Резистор включается между 8-ой ногой микросхемы и «землей» (или выводом GATE).
Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:
L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)
Пример расчета
Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).
Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:
Rosc = 25/fosc — 22 = 25/0.24 — 22 = 82 кОм
Идем дальше. Номинальный ток светодиодов — 3А, рабочее напряжение — 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:
L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн
Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.
Осталось рассчитать Rsense:
Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом
В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).
И вот, собственно, какая схема у нас получилась:
Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема — это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.
Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.
В статье были использованы следующие радиодетали:
Светодиоды | ||
---|---|---|
Cree XM-L T6 (10Вт, 3А) | 135 руб/шт. | |
Cree XM-L2 T6 (10Вт, 3А, медь) | 360 руб/шт. | |
Транзисторы | ||
40N06 | 11 руб/шт. | |
IRF7413 | 14 руб/шт. | |
IPD090N03L | 14 руб/шт. | |
IRF7201 | 17 руб/шт. | |
50N06 | 12 руб/шт. | |
Диоды Шоттки | ||
STPS2H100A (2А, 100В) | 15 руб/шт. | |
SS34 (3А, 40В) | 90 коп/шт. | |
SS56 (5А, 60В) | 3.5 руб/шт. |
Причины выхода из строя
Почему вообще сгорают светодиодные лампы, если, как заявляют производители светодиодов, ресурс светоизлучающих полупроводников составляет минимум 15-20 тысяч часов? Практически все драйверы не имеют механических элементов и контактов, значит, у них наработка на отказ должна быть не меньше. Но лампы горят, порой не выработав даже свой гарантийный срок, и это факт. Причин поломки лампочки может быть несколько:
- Производственный брак. Увы, от этого никто не застрахован. Особенно, если производители комплектующих и светодиодов – наши китайские братья, работающие в гараже и на коленках.
- Неправильная эксплуатация. К примеру, плохая вентиляция в закрытом светильнике. В таких источниках света лампа перегревается, и тут уж выйти из строя может все что угодно – от драйвера до светодиодов. Сюда же можно отнести пыль, влагу, «искрящий» выключатель, выключатель с подсветкой и т. п.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
Если в твоем выключателе стоит подсветка, то это верный путь к быстрой гибели светодиодной лампы. Либо снимай подсветку, либо вкрути в один из рожков люстры обычную лампочку накаливания любой, даже самой малой мощности.
Такая подсветка выключателя удобна, но вызывает «подмигивание» светодиодной лампы и сокращает срок ее службы в десятки раз
Плохое питание. Если напряжение постоянно скачет или оно ненормально завышено, тут даже самый качественный драйвер может «потерять терпение». Сюда же отнесем постоянные выбросы напряжения, к примеру, при пуске мощных моторов или сварочного оборудования, и импульсные помехи.
В этой китайской лампе «драйвер» примостился прямо на плате со светодиодами, а радиатором тут даже не пахнет
Это интересно: Влияние теплого пола на человека
Что такое драйверы для светодиодов и зачем они нужны
Светимость полупроводникового лед-кристалла напрямую зависит от силы тока, проходящего через него. Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется для него драйвер. В его задачу входит преобразование параметров электрического тока в следующих направлениях:
- Стабилизация силы в точном значении выходных параметров.
- Задание амплитуды.
- Выпрямление из переменного в постоянный.
Особенности драйвера светодиодов на 220 В
Главная особенность драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в том, что он изменяет напряжение и предназначен для работы с электрическим током подобных характеристик. Поэтому для подключения лампочки не пригодны его низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме того, модели последнего типа могут включать в состав понижающий блок – трансформатор.
При изготовлении преобразователя своими руками следует знать его основные характеристики:
- Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
- Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
- Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.
Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.
Теория питания светодиодных ламп от 220В
Лэд-лампа, как правило, представляет собой набор пространственно расположенных в определенной композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт). Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80 Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет для них избыточные параметры.
Поэтому потребуется понизить амплитуд и силу, а также трансформировать переменный электрический ток в постоянный. Для этого понадобится драйвер, для изготовления своими руками которого применяется делитель напряжения на емкостной или резисторной нагрузке, а также стабилизаторы.
Сборка и настройка драйвера
Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.
Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.
При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом
Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.
После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.
Список элементов:
Характеристики драйверов, их отличия от блоков питания LED ленты.
Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.
Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.
Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении
При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания
Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.
При выборе драйвера нужно учесть:
- Мощность,
- Напряжение,
- Предельный ток.
Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.
Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.
Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.
Сила тока через линейку будет рассчитываться по аналогичной формуле.
Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.
Схема простого led-драйвера без гальванической развязки.
Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.
Готовые микросхемы преобразователей тока для светодиодных светильников
На рынке можно встретить готовые микросхемы для преобразования тока. Ниже рассмотрим наиболее популярные из всех:
- Supertex HV9910 — импульсный преобразователь с током до 10 мА, не поддерживающий развязку.
- ON Semiconductor UC3845 — устройство импульсного типа, выходной ток которого равен 1 А.
- Texas Instruments UCC28810 — драйвер импульсного типа с поддержкой развязки и выходным током не более 750 мА.
- LM3404HV — отличный вариант для питания светодиодов высокой мощности. Работа построена по принципу преобразователя резонансного типа. Для поддержания номинального тока используется резонансная цепь, состоящая из конденсатора и полупроводникового диода Шоттки. При выборе сопротивления RON есть возможность задать требуемую частоту коммутации.
- Maxim MAX16800 — линейный драйвер для малого напряжения (12 В). Выходной ток насчитывает не более 350 мА. Данная схема драйвера для светодиодной лампы — отличный вариант для мощного led-диода или фонарика. Поддерживается диммирование.
Ремонт драйвера (LED) лампы
Иногда источник света отказывается работать в самый неподходящий момент. Это может произойти из-за его неправильной эксплуатации или по вине производителя (так часто бывает с китайской низкокачественной продукцией).
Самый простой драйвер для светодиодной лампы 220 В часто выполняют на обычных элементах (диодах, резисторах и т. д.). В этой схеме один или несколько светодиодов сразу выходят из строя при пробое конденсатора или одного из диодов моста. Поэтому сначала проверяют эти радиодетали.
Вместо светодиодов временно подключают обычную лампочку на 15-20 ватт (например, от холодильника). Если все детали кроме светодиода целы, она слабо горит.
Второй вариант представляет собой выпрямитель с делителем напряжения, импульсным стабилизатором на микросхеме и разделительным трансформатором. При неисправности люстры проверяют последовательно все элементы. Схема может отличаться от приведенной, но алгоритм поиска такой же.
Схема драйвера светодиодной лампы
Как отремонтировать:
- Сначала проверяют, поступает ли на светодиодные матрицы напряжение. Если оно есть, ищут неисправные LED детали и меняют их. Если с напряжением все в порядке, проверяют диоды моста и входные конденсаторы.
- Если они тоже целы, измеряют напряжение питания микросхемы (4-я ножка). При его отличии от 15-17 В этот элемент скорее всего неисправен, его следует заменить.
- Если микросхема целая и на ее 5 и 6-й ножках есть импульсы (проверяют осциллографом), то «виноваты» трансформатор и его цепи – конденсатор или диоды, подключенные к нему.
Многие люди приобретают длинные цепочки светодиодов, укрепленных на гибких подложках. Это LED ленты.
Есть два варианта таких источников:
- только LED приборы без дополнительных деталей;
- изделия с подпаянными к каждому элементу или цепочкам из 4-6 светодиодов резисторами, которые рассчитаны так, чтобы при напряжении 12-36 В и номинальном токе осветительные элементы не сгорали.
В обоих случаях часто применяют драйвера, которые уже были рассмотрены выше. Но иногда питание второго варианта LED лент осуществляется с помощью модуля, представляющего собой трансформаторный блок питания.
Cхема простого источника питания.
При ремонте драйвера светодиодного светильника 36 ватт, если ни один светодиод или цепочка не горят, сначала проверяют трансформатор на обрыв. Затем диоды и конденсатор выпрямителя. Детали R1 и C1 в такой схеме портятся очень редко.
Если хоть один или несколько элементов зажглись – напряжение питания поступает. В этом случае проверяют светодиоды и меняют их.
Как проверить драйвер светодиодной лампы
Проверить работу драйвера светодиода можно подключив светильник к сети. Надо только убедиться в исправности осветительного прибора и отсутствии пульсаций.
Существует способ проверить драйвер и без светодиода. На него подается 220 В и измеряются показатели на выходе. Показатель должен быть постоянным, по значению немного больше указанного на блоке. Например указанные на блоке значения 28-38 В обозначают выходное напряжение без нагрузки около 40 В.
Рисунок 8. Проверка исправности светодиода
Описанный способ проверки не дает полного представления об исправности драйвера. Нередко приходится сталкиваться с исправными блоками, которые не включаются вхолостую или же работают нестабильно без нагрузки. Выходом представляется подключение к прибору специального загрузочного резистора. Выбрать сопротивление резистора можно по закону Ома с учетом указанных на блоке показателей.
Выводы и полезное видео по теме
Как устранить характерные поломки светодиодной лампочки с цоколем E27. Подробная инструкция по разборке изделия, интересные практические советы по использованию подручных инструментов.
Подсказки, как корректно снять с прибора колбу, не повредив ее в процессе.
Простой способ отремонтировать лампочку лед-типа без использования паяльника. Вместо припаивания применяется специальная электропроводящая паста.
Полное описание работы на изделиях торговой марки «Космос», которой владеет KOSMOS Group, контролирующая около 25% отечественного рынка прогрессивной и экономной продукции для создания качественного освещения.
Как починить Led-лампочку типа «кукуруза». Особенности процесса разборки, конструкционные нюансы и прочие познавательные моменты. Существенное увеличение срока службы изделия после проведения всех работ.
Светодиодная лампочка – практичный источник освещения. Единственный минус этого изделия – высокая по сравнению с другими модулями цена. Правда, LED-приборы надежны и обычно полностью отрабатывают свой срок. А если вдруг в процессе эксплуатации возникнут поломки, большую часть из них можно будет устранить своими руками. Нужные инструменты найдутся у любого домашнего мастера, а выкроить время на ремонтные работы тоже не составит никакого труда.