Что такое светодиод и основные его характеристики

Таблица напряжения светодиодов

Чтобы светодиод обеспечивал при работе все характеристики, заданные его конструкцией и технологией изготовления, ему нужно обеспечить расчетное электропитание. Например, подать на его анод и катод напряжение, которое будет немного больше прямого напряжения p-n перехода. Избыток напряжения следует «погасить» на последовательно включенном резисторе. Резистор называется токоограничивающим. Он служит для того, чтобы не допустить превышения тока через p-n переход.

Таблица. Прямое напряжение p-n перехода светодиода цветного свечения.

Цвет свечения Напряжение рабочее, прямое, В
белый 3,5
красный 1,63–2,03
оранжевый 2,03–2,1
желтый 2,1–2,18
зеленый 1,9–4,0
синий 2,48–3,7
фиолетовый 2,76–4
инфракрасный до 1,9
ультрафиолетовый 3,1–4,4

Мощные светодиоды, их характеристики

Мощные светодиоды на основе COB-матриц. У крупных моделей в углах корпуса имеются отверстия для крепления. Модели небольших размеров крепятся пайкой на печатную плату.

В дополнение к обычным характеристикам светодиодов у мощных моделей добавляются несколько дополнительных характеристик:

  • номинальная мощность, Вт;
  • размер чипа, мм;
  • номинальный рабочий ток кристалла или матрицы;
  • срок службы, связанный со стандартами L 70, L80 и др.

Маломощные светодиоды

По величине потребляемой мощности – это светодиоды от 0,05 до 0,5 Вт, рабочий ток – 20-60 мА (средней мощности – 0,5-3 Вт, ток 0,1-0,7 А, большой – более 3 Вт, ток 1 А и более).

Конструктивно к маломощным светодиодам относятся несколько групп LED-излучателей света:

  • светодиоды в корпусах SMD обычные и сверхъяркие;
  • диоды типа DIP в цилиндрических корпусах – для монтажа в отверстия печатных плат;
  • в корпусах типа «пиранья» – для монтажа в отверстия.


Маломощные светодиоды в разных корпусах.

На картинке светодиоды сверху вниз:

  1. В цилиндрических корпусах типа DIP – с гибкими проволочными выводами для пайки в отверстия платы.
  2. В корпусах типа «пиранья», они же Superflux, пайка в отверстия.
  3. В корпусах с планарными выводами для монтажа на контактные площадки одно- и двухсторонних печатных плат или в «колодцы» многослойных плат.

Мир светодиодов: краткий обзор предложений современных производителей

Первые удачные эксперименты были проведены более ста лет назад. Но только в конце 70-х прошлого века удалось создать образцы, пригодные для коммерческого применения.

Разные комбинации полупроводниковых материалов создают волны определенной длины

Для зеленого цвета применяют AlGaInP (Алюминий-Галий-Фосфид индия). Красный получается с использованием AlGaAs (Алюминий-Арсенид галлия). Долгое время не могли найти комбинацию для синего. Только в 90-х годах был найден подходящий состав, за который авторы получили Нобелевскую премию. Сочетание перечисленных цветов позволило создать белый свет. С этого времени был дан старт массовому внедрению технологий данной категории в разные сферы человеческой деятельности.

Индикаторные светодиоды

Конструкция прибора DIP типа

Для концентрации светового потока функции отражателей выполняет опорная пластина и стенки. Такие приборы выпускают с выпуклыми линзами и прямоугольными торцами диаметром от 3 до 10 мм. Их подключают к источникам питания 2,5-5 В с ограничением по току до 20-25 мА. Угол рассеивания не превышает 140°. Яркость – до 1,1 люмен.

Индикаторные светодиоды ранее применяли для создания фонарей, светофоров, информационных стендов и рекламных табло. В наши дни появились новые модификации полупроводниковых приборов с большей силой света.

Оригинальная подсветка сценических костюмов

На практике пригодятся следующие преимущества индикаторных светодиодов:

  • низкая стоимость;
  • хорошая защищенность от влаги и других неблагоприятных внешних воздействий;
  • безопасные токи и напряжение питания;
  • небольшое потребление энергии.

Последний пункт надо дополнить низким выделением тепла. Такие устройства способны функционировать долгосрочно в широком температурном диапазоне без специальных охлаждающих радиаторов.

Осветительные светодиоды

Полупроводниковые приборы SMD, как наиболее распространенные изделия, подробно рассмотрены ниже. Их создают в стандартных размерах на специальной подложке, которая хорошо приспособлена для последующего монтажа на печатную плату.

Излучающее поле лампы, созданное из SMD светодиодов

Для улучшения защищенности полупроводники закрепляют на подложке внутри литого пластикового корпуса. Верхняя полусферическая часть образует линзу, что помогает сузить световой поток.

«Пиранья». Грозное название этой категории подчеркивает высокую эффективность приборов

Следующая группа изделий создана специально для освещения. На подложке размещают синие светодиоды. Сверху – слой люминофора. В данном случае применяют большее количество кристаллов на единицу поверхности по сравнению с технологией SMD. Это позволяет получить сильный световой поток.

Мощную матрицу категории COB (Chip On Board) надо охлаждать. Такие лампы устанавливают в автомобильные фары ближнего и дальнего светаТехнология Chip On Glass («Чип-на-стекле»)

На фото изображены основные стадии производственного процесса:

  1. Создается подложка из стекла нужной формы.
  2. На ней закрепляют последовательно полупроводниковые кристаллы.
  3. Сверху устанавливают слой люминофора.
  4. Далее – финишное защитное покрытие.

В цоколе лампочки размещают блок питания, который создает постоянное напряжение с нужной силой тока.

Плюсы и минусы осветительных светодиодов

Выяснив, какие бывают светодиоды, надо перечислить их преимущества по сравнению с альтернативными изделиями:

  • Лучшие полупроводниковые приборы способны обеспечить более 200 люменов на 1 Вт энергии. Это потребление на 80-85 % меньше по сравнению с типовыми лампами накаливания.
  • Качественные светодиодные светильники устойчивы к вибрациям, перепадам напряжения в сети. Долговечность лучших изделий приближается к 100 тыс. часов, что эквивалентно белее чем 11 годам непрерывной эксплуатации.
  • Отсутствие ртутных и других вредных соединений вместе с прочной рассеивающей колбой повышает уровень безопасности.

Не забывайте, что в экономический расчет надо включать все сопутствующие расходы. Светодиодные источники, сделанные известными производителями, стоят дорого. Только через несколько лет получится окупить первоначальные инвестиции. Также надо отметить:

  • Мерцание при недостаточно качественной сборке блока питания.
  • Небольшой угол рассеивания.
  • Различные технические характеристики в одной товарной партии.
  • Узкий диапазон цветовой температуры, несоответствие параметра паспортным данным.

Что такое светодиоды

В последнее время ведется много разговоров о светодиодах, постоянно появляются новости о все более мощных светодиодах, новых разработках и новых товарах на основе светодиодов (стоит вспомнить хотя бы новые жк-мониторы со светодиодной подсветкой от компании Apple). Так что же такое светодиод? Светодиод – это прибор на основе полупроводника, который излучает свет при пропускании через него электрического тока. Существует большое количество различных полупроводниковых материалов из которых делают светодиоды, причем характеристики светодиодов (цвет свечения, яркость свечения и т.д.) зависят от химического состава данных материалов.

Светодиоды разных размеров, цветов и яркости

Плюсы и минусы светодиодов RGB

RGB-светодиодам присущи все достоинства, имеющиеся у полупроводниковых светоизлучающих элементов. Это низкая стоимость, высокая энергоэффективность, долгий срок службы и т.д. Отличительным плюсом трехцветных LED является возможность получения практически любого оттенка свечения простым способом и за небольшую цену, а также смена цвета в динамике.

К основному минусу RGB-светодиодов относят невозможность получения чистого белого цвета за счет смешения трех цветов. Для этого потребуется семь оттенков (в качестве примера можно привести радугу – ее семь цветов являются результатом обратного процесса: разложения видимого света на составляющие). Это накладывает ограничения на использование трехцветных светильников в качестве осветительных элементов. Чтобы несколько компенсировать эту неприятную особенность, при создании светодиодных лент применяется принцип RGBW. На каждый трехцветный LED устанавливается один элемент белого свечения (за счет люминофора). Но стоимость такого осветительного устройства заметно возрастает. Также бывают светодиоды исполнения RGBW. У них в корпусе установлено четыре кристалла – три для получения исходных цветов, четвертый – для получения белого цвета, он излучает свет за счет люминофора.


Схема подключения для RGBW-варианта с дополнительным контактом.

Характеристики

Для того чтобы понять принцип работы устройств, необходимо знать следующие характеристики светодиодов:

1. Световой поток. Этот параметр измеряется в люменах (Лм) и показывает количество света, которое выдает лампа. Чем больше будет этот показатель, тем ярче она будет светить.2. Мощность потребления, измеряется в Ваттах (Вт). Чем меньше этот параметр, тем экономичнее расход электроэнергии.3. Светоотдача, ее единицей измерения считается Лм/Вт. Она является главной в работе и эффективности всего осветительного прибора.4. Диаграмма направления излучения. Параметр кривой силы света, благодаря которому распределяются потоки, излучающиеся диодами.5. Цветовая температура (оттенки белого освещения). Измеряется в градусах Кельвина в допустимом диапазоне от 2700 до 7000 К. Оттенок теплого цвета считается самым благоприятным для глаз, который варьируется до 4000 К, а все показатели, которые выше, принято обозначать, как «холодный белый». Чаще всего светильники с теплым светом стоят намного дороже, чем с холодным, так как это напрямую связано с особенностями их производства.6. Индекс цветопередачи. Эта величина показывает, насколько правдиво будет отображен цвет предмета, который освещается выбранными светильниками. Чем выше такой параметр, тем правдивее передается оттенок исходного предмета. 7. Производительность приборов освещения. Самым правильным решением является выбор брендовых заводов-изготовителей, так как такие компании могут предоставить более точные технические характеристики светодиодов, благодаря чему прибор прослужит заявленное время работы. Также в таких лампах предусмотрена защита от скачков напряжения и перегрева.8. Размер прибора. Не нужно судить о недостатках и достоинствах исходя из размера кристалла. Не имеет значения, большой или маленький используется светодиод, самым важным считается его мощность.

Учитывая такие характеристики светодиодов, можно выбрать именно то устройство, которое даст максимальный эффект от его целевого использования.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис. 2

Гальванический элемент

2. Гальванический элемент

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу. То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления

Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Рис. 3. Диод

Рис. 4. Электроды светодиода Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Как делают светодиоды

Светодиоды – это кристаллы, выращенные или наращенные из химических элементов на основе полупроводников. Они помещаются в специальный для каждого вида светодиодов корпус. Технологии изготовления светодиодов разнятся в зависимости от вида светодиода. Изготавливают светодиоды с добавлением различных химических элементов. Среди них полупроводники и не полупроводниковые металлы и их соединения. А также легирующие, то есть придающие составу определенные характеристики, примеси.

Изготовление светодиодов

Процесс изготовления светодиодов выглядит, примерно, следующим образом:

Пластины, служащие в качестве подложки будущих кристаллов светодиодов, помещают в специальную герметичную камеру. Такие пластины изготавливают из удобных для наращивания светодиодов материалов. Например, из искусственного сапфира, у которого подходящая для этого кристаллическая решетка. Прежде всего камеру заполняют смесью газообразных химических веществ на основе полупроводников и легирующих добавок. Затем внутренность такой камеры начинают нагревать. В процессе этого нагрева химические элементы, находящиеся до этого в газообразном состоянии, осаждаются на пластинах.

Процесс длится несколько часов. В итоге на подложке наращивается несколько десятков слоев общей толщиной лишь несколько микрон. Отличие в толщине пластины до и после наращивания не различимо на глаз.

Затем с помощью трафарета на пластину напыляются золотые контакты. После чего ее разрезают на мельчайшие части. Каждая такая часть – это отдельный кристалл светодиода со своими контактами. Размеры ее очень малы. По крайней мере, разглядеть ее в деталях можно лишь под микроскопом.

На следующем этапе готовые кристаллы вставляют в корпус. После того, по необходимости покрывают слоем люминофора. Тип корпуса и количество кристаллов зависят от того, где и как данный светодиод будет использоваться.

Все светодиоды отличаются друг от друга как отпечатки пальцев. То есть нет двух идентичных по своим характеристикам светодиодов. Потому на следующем этапе и происходит сортировка светодиодов по двум-трем сотням параметров. Чтобы отобрать наиболее близкие друг другу по мощности, цветовой температуре и другим характеристикам светодиоды.

В конце концов светодиоды проверяют на работоспособность на испытательных стендах. И лишь затем из них изготавливают светодиодные лампы, ленты или используют в других сферах применения.

Калькулятор, используемый для расчета сопротивления

На многих сайтах по продаже LED-элементов имеется онлайн-калькулятор токоограничивающих элементов. Исходные данные для расчета:

  • напряжение источника или блока питания, В;
  • номинальное прямое напряжение устройства, В;
  • прямой номинальный рабочий ток, мА;
  • количество светодиодов в цепочке или включенных параллельно;
  • схема подключения светодиода(ов).

Исходные данные можно взять из паспорта диода.

После введения их в соответствующие окна калькулятора нажмите на кнопку «Расчет» и получите номинальное значение резистора и его мощность.

Использование токоограничивающего резистора для задания рабочих характеристик светодиода – простой и надежный способ обеспечить его работу в оптимальном режиме.

Но при мощности диода более сотни милливатт нужно применять автономные или встроенные источники стабилизации тока или драйверы.

Что такое светодиодный экран, светодиодные модули?

Это экран , в котором в качестве источника света используется полупроводниковый светодиод (light-emitting diode
– LED). Все современные светодиодные экраны строятся по модульной технологии, т.е. собираются из отдельных одинаковых модулей, как из кирпичиков. К сожалению, унификации и стандартизации в этом вопросе нет. Поэтому каждый разработчик и производитель создает свой тип модуля, размер, сигнальные интерфейсы. Светодиодный экран может быть любого размера, кратного размеру одного модуля.
Светодиодный модуль представляет собой функционально законченную сборочную единицу, внутри которого смонтирована вся управляющая электроника. На лицевой стороне модуля установлены светодиодные матрицы (суб-модули), которые и образуют информационное полотно экрана в сборе.
Примеры LED-экранов :

4. ТИПЫ СВЕТОДИОДОВ Светодиоды в очень малой степени подвержены повреждениям, когда работают при низких температурах и небольшом токе. Множество светодиодов, произведенных в 70-80 годах прошлого века, работают по сей день. Однако повышенный ток и высокая температура могут легко вывести их из строя. Основной признак неисправности светодиода – это сильное уменьшение светового потока при номинальном рабочем напряжении. Создание новых типов светодиодов (например, сверхъярких ) привело к повышению рабочих токов и увеличению температуры кристалла. Реакция материалов, из которых производятся мощные светодиоды, на подобные условия, еще до конца не изучена, поэтому деградация кристаллов  — одна из основных причин отказов. Светодиод считается неработоспособным, когда его световой поток падает на 75%.
4.1. Синий свет Синие светодиоды базируются на сплавах  GaN и InGaN. Комбинация с красным и зеленым светодиодами позволяет получить чистый белый цвет, но такой принцип формирования белого сейчас используется редко.
Первый синий светодиод был изготовлен в 1971 году Jacques Pankove (изобретателем нитрида галлия).  Но он производил слишком мало света, чтобы его можно было использовать на практике. Первый яркий синий диод был продемонстрирован в 1993 году и получил широкое распространение.  

4.2. Белый свет Существует два пути получения белого света достаточной интенсивности с применением светодиодов. Первый из них – это объединение в одном корпусе кристаллов трех основных цветов: красного, синего и зеленого . Смешение этих цветов позволяет получить белый цвет. Другой путь – использование фосфора для преобразования синего или ультрафиолетового излучения в белый цвет широкого спектра. Подобный принцип используется при производстве ламп дневного света.

Полярность SMD-светодиода

На текущий момент все более популярными становятся безвыводные элементы для непосредственного монтажа на плату (SMD – surface mounted device). Такие радиоэлементы, в отличие от обычных, имеют преимущества:

  • в процессе изготовления печатной платы не надо сверлить отверстия – технология становится дешевле и быстрее;
  • электронные устройства получаются меньших размеров;
  • упрощается конструирование ВЧ-устройств – отсутствие выводов сводит к минимуму паразитные наводки.

Но стремление к миниатюризации имеет оборотную сторону – определить выводы СМД-светодиода сложнее. К нему трудно подключить щупы тестера или источника питания

Поэтому важно нанесение понятной маркировки прямо на корпус элемента для исключения ошибок при монтаже. Такое обозначение выполняется в виде метки на корпусе (скоса или углубления) или в виде мнемонического рисунка


Цоколевка SMD-LED типоразмера 5730.


Цоколевка SMD-LED типоразмера 0805.

А самым простым случаем является включение светоизлучающего диода в цепь переменного тока. В этом варианте полярность светодиода значения не имеет.

Как проверить светодиод мультиметром

Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».

Схема проверки светодиода с помощью цифрового мультиметра

Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.

Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.

Преимущества

По сравнению с другими электрическими источниками света светодиоды имеют следующие отличия:

  • Высокая световая отдача. Современные светодиоды сравнялись по этому параметру с натриевыми газоразрядными лампами и металлогалогенными лампами, достигнув 146 люмен на ватт.
  • Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих).
  • Длительный срок службы — от 30000 до 100000 часов (при работе 8 часов в день — 34 года). Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «деградация» кристалла и постепенное падение яркости.
  • Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп).
  • Спектр современных белых светодиодов бывает различным — от тёплого белого = 2700 К до холодного белого = 6500 К.
  • Спектральная чистота, достигаемая не фильтрами, а принципом устройства прибора.
  • Отсутствие инерционности — включаются сразу на полную яркость, в то время как у ртутно-фосфорных (люминесцентных-экономичных) ламп время включения от 1 с до 1 мин, а яркость увеличивается от 30 % до 100 % за 3-10 минут, в зависимости от температуры окружающей среды.
  • Различный угол излучения — от 15 до 180 градусов.
  • Низкая стоимость индикаторных светодиодов.
  • Безопасность — не требуются высокие напряжения, низкая температура светодиода, обычно не выше 60 °C.
  • Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
  • Экологичность — отсутствие ртути, фосфора и ультрафиолетового излучения в отличие от люминесцентных ламп.

Как устроен светодиод

Устройство светодиода достаточно простое. Кристалл с защитным корпусом располагается на подложке, излучающей тот или иной цвет. Для определенного свечения используют химический состав и люминофор.

У светодиода два контактных вывода – анод и катод, катод короче анода. Если длина одинаковая, то определить их можно пальчиковой батарейкой. Если появился свет, значит, перед вами анод.

Корпус заканчивается линзой. Рефлектор и линза образуют оптическую систему, формирующую угол потока. В нижней части корпуса можно увидеть алюминиевый или латунный поясок, выступающий в роли радиатора для отвода тепла, которое выделяется во время работы.

Из чего делают

Пластина подложки помещается в камеру, заполненную газообразными химическими веществами. Для пластины используют различные материалы, например, искусственный сапфир с подходящей кристаллической решеткой. Камеру нагревают, химические вещества оседают на пластине. Так образуется несколько слоев.

Нет идентичных светодиодов. Они, как отпечатки пальцев — у  каждого свои характеристики. Светодиоды распределяют по цветам.

Светодиоды фирмы CREE

Эта фирма специализируется на изготовлении сверхкачественных и ярких диодов. Она одна из первых начала разрабатывать новые белые лампочки, тем самым установив новую веху в индустрии.

Светодиоды CREE, характеристики которых представлены, остаются конкурентоспособными в своей отрасли:

— имеют рекордные значения светового потока, достигающие 345 люменов при токе 1000 мА;- тепловое сопротивление на низком уровне;- относительно расширенный угол изучения;- миниатюрный, равномерно распределенный кристалл;- максимальный прием тока до 1500 мА;- улучшенную линзу из силикона вместо используемого стекла;- максимальную температуру работы кристалла 150 °С.

Как видно, такие технологии только вступают в силу и приносят исключительные выгоды от их использования. Каждый день делаются новые открытия, светодиодные лампы становится более экономичными и яркими, благодаря чему начинают по праву занимать лидирующее место на световой арене.

Основные выводы

Четкой классификации светодиодов по сферам
применения не существует, так как эти источники света практически никогда не
изготавливаются для какой-то конкретной цели.

Осветительные диоды монтируются в
различные приборы:

  • традиционные
    лампы с цоколем;
  • цилиндрические
    лампы «кукуруза»;
  • ленты
    (одно- и многоцветные);
  • точечные
    светильники;
  • панели;
  • прожекторы;
  • переносные
    фонари.

Потребители выбирают осветительные
приборы не только по виду диодов, но и по другим параметрам:

  • световому
    потоку;
  • мощности;
  • цвету
    света;
  • виду
    цоколя;
  • уровню
    пульсации;
  • углу
    рассеивания;
  • степени
    защищенности.

У качественного светодиодного источника имеется маркировка, по которой можно определить мощность, световой поток, уровень пульсации, угол рассеивания. Вероятность приобрести некачественное изделие снижается, если покупки совершаются больших магазинах. Предпочтения нужно отдать продукции известных производителей: Philips; Osram; Eurolamp.

При создании системы освещения в новом доме или квартире для расчетов лучше пригласить специалиста. Он нужен для того, чтобы не тратить время на изучение всех источников света, предлагаемых на рынке, из классификации, особенностей, преимуществ и недостатков. Самостоятельно выбрать светодиод можно при необходимости заменить лампы в имеющихся светильниках или покупке одного или двух осветительных приборов. 

Предыдущая
СветодиодыВыбираем и устанавливаем светодиодную насадку для подсветки воды
Следующая
СветодиодыСветодиод Т6 или U2 что лучше по техническим характеристикам

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector