На что обращать внимание при выборе компрессора в гараж: калькулятор, критерии

Содержание:

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У — модели для эксплуатации в умеренном климате;
  • ХЛ — электродвигатели, адаптированные к холодному климату;
  • ТС — исполнения для сухого тропического климата;
  • ТВ — исполнения для влажного тропического климата;
  • Т — универсальные исполнения для тропического климата;
  • О — электродвигатели для эксплуатации на суше;
  • М — двигатели для работы в морском климате (холодном и умеренном);
  • В — модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 — возможность эксплуатации на открытых площадках;
  • 2 — установка в помещениях со свободным доступом воздуха;
  • 3 — эксплуатация в закрытых цехах и помещениях;
  • 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Для чего необходим ресивер компрессора

Производительность компрессора параметр важный, но не им одним оценивается работа компрессорной установки. Не меньшее значение имеет и стабильность давления воздуха, подаваемого на различные инструменты и оборудование. К примеру, если на входе в краскопульт давление будет «плавать», то и покраска будет соответствующего качества. Ресивер как раз и является одним из элементов системы, которые обеспечивают минимальные колебания давления воздуха в отходящих магистралях к работающему технологическому оборудованию. При этом ошибочно считать, что выбор большого объема ресивера решет все проблемы. Если выбрать чрезмерную емкость ресивера, то будет увеличиваться время непрерывной работы компрессора для поддержания необходимого давления внутри емкости, особенно при первичном его запуске. А, следовательно, увеличиться и время подготовки к работе производственного оборудования. Точно так же неправильным будет выбор и слишком маленького объема. В этом случае время цикла изменения давления внутри ресивера от максимума к минимуму и обратно будет настолько мало, что работа компрессора будет состоять из непрерывной последовательности включений и выключений

Это может привести к преждевременному износу и выходу из строя самого важного и дорогого элемента установки – компрессора

Производительность

Эта характеристика является самой важной, так как от неё в основном зависит стоимость оборудования. Производительность данного оборудования — это объемная характеристика, которая определяет, количество газа сжимаемого по времени

Производительность данного оборудования — это объемная характеристика, которая определяет, количество газа сжимаемого по времени.

Почти все производители пишут в тех. паспорте значение входной производительности. Это значение нельзя принимать равным значению на выходе, ведь объём воздуха в результате всех этапов изменится. Значение берётся из нормальных атмосферных условий (+20 градусов по C)

Это важно для поршневых компрессоров, ведь перепад между входным и выходным производительностями может разниться почти в два раза

Для вычисления входной производительноcти используется формула:

A=Q*(B/n);

Где A – производительность оборудования

Q – суммарный объём воздуха

n – КПД компрессора

B – коэффициент запаса производительности компрессора.

Например, в непрофессиональных роторных компрессорах коэффициент B равен 1 и n тоже равен 1.

А для получения значения производительности на выходе необходимо умножить результат на 0,3 или 0,4 для отечественного оборудования.

Но для поршневого компрессора потребуется совершенно другая формула, учитывающая другие параметры, такие как площадь поперечного сечения цилиндра, ход поршня, объемный КПД, и частоту вращения вала.

Обобщая, она выглядит так:

Vп= λ0*F*S*N

Где λ0 – объемный КПД, F – площадь сечения цилиндра, S- шаг поршня, N – частота вращения вала.

В целом, вот так высчитывается производительность. Но если вас интересует, какая производительность будет нужна для вашего конкретного оборудования, то загляните в паспорт этого оборудования, узнайте в нем потребляемое количество воздуха и увеличьте это значение на 30, а лучше даже на 50%. Именно такая производительность должна быть указана в паспорте компрессора, который подойдет для вашей техники.

Заблуждения при выборе компрессора. Производительность и давление

Существуют несколько заблуждений и мифов, которые проявляются при покупке компрессора. Опыт 20 лет работы на pnevmo.ru показал, что сложности у многих заказчиков возникают даже с основными параметрами компрессора: производительностью и давлением. Например, что такое производительность компрессора? Из логики понятно, что это количество воздуха, которое компрессор нагнетает в единицу времени.Что такое производительность по всасыванию у поршневых компрессоров? На наш взгляд это теоретическая производительность которая определяется как произведение объема цилиндра (площадь поршня умноженная на ход поршня) на частоту вращения коленчатого вала. Она достаточно сильно отличается от реальной, часто завышая значение на 30%. 40%Кстати, одним из наиболее честныx производителем компрессоров является Бежецкий завод АСО, который в отличии от остальных публикует реальные значения производительности.

Как проверить производительность поршневого компрессора? Логично предположить, что нужно взять секундомер и засечь, за какое время компрессор накачает пустой ресивер

Обращаю внимание на слово пустой — в ресивере всегда осаждается вода и если её не слить, то результаты будут завышены.Дальше: воду слили, секундомер наготове, включаем компрессор и засекаем время… и получаем неправильный ответ.Дело в том, что если компрессор будет накачивать ресивер до 10 бар, то до 1 бара он накачает быстро, до двух чуть медленнее, и так далее, где время накачивания от 9 до 10 бар будет самым продолжительным.Особенно это характерно для компрессоров с одной ступенью сжатия. Поэтому правильнее будет засекать время после остановки компрессора на 10 барах и запуске на 8, вот эти два бара и покажут реальную производительность

Почему так? Потому что поршневой компрессор должен работать с остановками, а если такого не случается, то это означает, что компрессор подобран неправильно.В зависимости от типа, компрессор должен отдыхать от 20 до 50% времени.

Рабочее давление — давление при котором происходит зксплуатация компрессора в нормальном режиме. Поршневые компрессоры снабжены реле давления, которое обычно настраивается на разницу в 2 бара. Если компрессор выключился например при 10 барах, а включился при 8, то какое давление считается рабочим 10 или 8? На наш взгляд правильнее считать, что 8.Если у вас в магистрали 7 бар, то 8 на выходе из компрессора, через редуктор считается нормальным. Если будет опускаться ниже 7бар, то значит не хватает производительности компрессора. Многие считают, что лучше взять компрессор с запасом, скажем на давление 13 бар, что бы 10 было в системе гарантировано. Если у вас оборудование работает от 6-7 бар, то покупка 13-барного компрессора приведет только к лишним расходам на электричество, примерно 25-30% в ущерб производительности.

Что бы не было подобных недоразумений, советуем приобретать винтовые компрессоры. Они более надежные и эффективные и не имеют тех особенностей что поршневые. Но опять же повторюсь, не надо брать компрессор на 10 бар, если у вас в системе 7, Лучше взять на 8 бар, так как производительность у него будет выше чем у 10-барного при одинаковой цене.

Источник

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Источник

Характеристики для выбора компрессора

Приступая к выбору компрессора, необходимо иметь четкое представление, для каких целей он будет использоваться. Только с учетом этой информации можно подбирать агрегат, учитывая его основные характеристики.

Рабочее давление

Степень сжатия, которую компрессор способен создать, является основополагающей характеристикой для данного агрегата. От показателя рабочего давления зависит, будет ли работать тот или иной пневмоинструмент с требуемой эффективностью.

Давление в документации к компрессору может указываться в следующих единицах:

  • паскалях (Па);
  • барах (бар);
  • атмосферах (атм);
  • миллиметрах ртутного столба (мм. рт. ст.);
  • килограмм-силах на кв. см. (кгс/см2);
  • в фунтах на кв. дюйм (PSI).

Чаще всего применяются такие единицы, как Па и бар (1 бар = 0,1 Па).

Например, аппарат может сжать воздух максимум до 10 Па. Но пока он дойдет до инструмента по магистрали, давление снижается до 6 Па. Если инструмент сможет эффективно работать при таком давлении, то это хорошо. Но если пневматическое оборудование рассчитано на большие показатели рабочего давления, то компрессор придется заменить на более мощный.

Производительность

Под производительностью агрегата принято подразумевать объем сжатого воздуха, который он может произвести за единицу времени. Производительность компрессора измеряется в л/мин или м3/мин и не является стабильным показателем, поскольку зависит от модели агрегата и температуры окружающего воздуха.

Совет! Чтобы исключить неправильную работу пневмоинструмента, рекомендуется выбирать компрессор с небольшим запасом производительности.

Мощность

Указывается в паспорте к агрегату в киловаттах (кВт) или лошадиных силах (л.с.) (1 кВт = 1,36 л.с.). В принципе, мощность агрегата определяет его производительность. Соответственно, чем этот показатель выше, тем мощность установленного в компрессор двигателя будет больше. Как рассчитать производительность, будет рассмотрено далее, следовательно, производить расчет мощности компрессора не обязательно.

Рабочее напряжение и частота

Оборудование для сжатия воздуха может работать как от трехфазной, так и от однофазной сети. Трехфазная сеть является редкостью для частных домов, поэтому трехфазные агрегаты являются профессиональными и, как правило, предназначены для производства. Если компрессор будет подключаться к бытовой электросети 220 В, то и выбирать в таком случае следует однофазный агрегат, соответствующий напряжению и частоте в сети, которая в России равняется 50 Гц и является единым стандартом.

Объем ресивера

Ресивер является накопительной емкостью, в которую закачивается воздух из камеры сжатия компрессора. От объема ресивера зависит количество включений (выключений) агрегата. Чем больше объем емкости, тем реже будет включаться аппарат для подкачки в нее воздуха. Но чтобы наполнить большой ресивер, агрегату потребуется больше времени. Конечно же, ресивер меньших размеров заполнится быстрее, но и давление в нем будет падать так же быстро при работе инструмента.

Совет! Рекомендуется выбирать агрегат, например, для гаража, с ресивером большого объема.

Уровень шума

Шум компрессора является огромным его недостатком. Компрессор, особенно поршневого типа, издает сильный шум, иногда доходящий до 85 дБ, который можно сравнить с шумом возле железной дороги

Поэтому, выбирая агрегат, обратите внимание, установлена ли на нем шумоизоляция, и какой уровень шума он издает. Желательно, чтобы он не превышал 68 дБ

Если данные цифры, указанные в инструкции к аппарату, вам ничего не говорят, можно попросить продавца проверить компрессор на шумность, включив его.

Совет! Если уровень шума является параметром, который нужно максимально уменьшить, например, для использования в помещении, где работает много людей, то следует остановить выбор на винтовом компрессоре. Винтовой агрегат — это самый малошумный и тихий компрессор, к тому же более компактный, чем поршневой.

Винтовой компрессор GUDEPOL 7.5 квт 500L

Производитель

Производством компрессорного оборудования занимается большое количество различных фирм, отчего рынок данной продукции находится в переполненном состоянии. Поэтому марка компрессора должна также учитываться, если вы хотите купить хороший агрегат. Домашним и профессиональным мастерам рекомендуется производить подбор компрессора среди продукции от известных брендов, таких как Metabo, Fini, Fubag и Abac.

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока — возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели — оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок — до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

РАСЧЕТ МОЩНОСТИ И ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ ПРИВОДА КОМПРЕССОРА

При выборе мощности двигателя для компрессора, как и для всех механизмов с продолжительным режимом работы и постоянной нагрузкой, требуемую мощность Рдв двигателя находят по мощности на валу механизма с учётом потерь в промежуточном звене механической передачи.

В зависимости от назначения, мощности и характера производства, где установлены механизмы этой группы, они могут требовать или небольшого, но постоянного подрегулирования производительности при отклонении параметров воздуха от заданных значений, или же регулирования производительности в широких пределах.

Мощность двигателя компрессора определяется по формуле:

где: Q – производительность (подача) компрессора, м 3 /с; А=(Аиа)/2 –работа, Дж/м 3 , изотермического и адиабатического сжатия 1 м 3 атмосферного воздуха давлением ρ1 = 1,01·10 5 Па до требуемого, давления ρ2, Па; для давлений до 10·10 5 Па значения А указаны ниже:

ηк – индикаторный КПД компрессора, учитывающий потери мощности при реальном процессе сжатия воздуха и равный 0,6 – 0,8;

ηп – КПД механической передачи между компрессором и двигателем, его значения лежат в пределах 0,9 – 0,95;

k 3 – коэффициент запаса, равный 1,05 – 1,15 и учитывающий не поддающиеся расчету факторы.

Таким образом, расчетная мощность двигателя равна:

Из литературы (табл. 11.6, с. 269) выбираем двигатель СТД – 1600 – 2УХЛ4, напряжением 10 кВ, с частотой вращения 3000 об/мин.

СТД – синхронный турбодвигатель;

1600 – мощность двигателя, кВт;

2 – число полюсов;

УХЛ4 – климатическое исполнение и категория места размещения.

Для компрессора типичен продолжительный режим работы, поэтому их электроприводы, как правило, нереверсивные с редкими пусками. Также компрессор имеет небольшие пусковые статические моменты – до 20-25% от номинального.

Выбор синхронного двигателя обуславливается несколькими основными причинами:

Во-первых, это жёсткая характеристика синхронных двигателей, то есть при увеличении нагрузки на валу двигателя обороты не изменяются, что очень важно для производительности компрессора. Во-вторых, при своих габаритах синхронный двигатель имеет гораздо большую мощность по сравнению с асинхронным двигателем

Во-вторых, при своих габаритах синхронный двигатель имеет гораздо большую мощность по сравнению с асинхронным двигателем.

В-третьих, синхронный двигатель имеют К.П.Д. на 2,5% больше (96,6%), чем у асинхронных двигателей и момент имеет прямо пропорциональную зависимость от напряжения.

Производительность компрессоров можно изменять тремя способами: изменением угловой скорости приводного двигателя, изменением сопротивления магистрали (трубопровода) с помощью задвижки, а также конструктивными изменениями рабочих органов механизма в процессе регулирования.

В-четвёртых, у синхронных двигателей при номинальном токе cos φ = l , а при перевозбуждении двигатель может служить в качестве компенсатора реактивной мощности и повышать cosφ предприятия в целом.

Источник

Механический нагнетатель: устройство компрессора на двигатель автомобиля и принцип работы

Как уже было сказано выше, механические компрессоры приводятся в действие от коленчатого вала. Чаще всего для этого используется приводной ремень. Что касается компрессора, в его основе лежит ротор, который создает давление воздуха.

При этом компрессор должен вращаться быстрее коленвала ДВС. Для этого ведущая шестерня изготавливается большей по размеру, чем шестерни компрессора. Компрессор вращается с частотой около 50 тыс. об/мин., поднимая давление PSI с 6 до 9 до дюймов на квадратный дюйм. С учетом того, что атмосферное давление составляет около 14.7 фунтов на квадратный дюйм, компрессор увеличивает подачу воздуха фактически в половину.

За охлаждение отвечает интеркулер, который бывает воздушным и жидкостным. Интеркулеры представляют собой радиатор, куда попадает горячий сжатый воздух после выхода из компрессора для охлаждения.

Виды механических компрессоров

Механические компрессоры, которые устанавливаются на двигатель внутреннего сгорания:

  • роторный компрессор,
  • двухвинтовой нагнетатель;
  • центробежный компрессор;

Основные отличия заключаются в том, как реализована подача воздуха. Компрессор роторный и двухвинтовой имеют в своем устройстве разные типы кулачковых валов. Центробежный нагнетатель оборудован крыльчаткой, которая затягивает воздух вовнутрь. Также отметим, что в зависимости от размеров и типа нагнетателя напрямую зависит его эффективность.

  • Например, роторные компрессоры обычно имеют большие размеры и ставятся сверху на двигатель. В основе лежит большой ротор. При этом данное решение отличается меньшей эффективностью, чем аналоги, так как вес автомобиля сильно увеличивается и создается прерывистый поток воздуха со «всплесками», а не постоянный и стабильный.
  • Двухвинтовой компрессор работает по принципу проталкивания воздуха через пару меньших по размеру роторов, похожих на червячную передачу. В результате работы воздух попадает в полости между лопастями роторов. Затем воздух сжимается внутри корпуса роторов.

Эффективность такого решения выше, однако стоимость нагнетателя боле высокая, конструкция сложнее и менее ремонтопригодна. Также двухвинтовой компрессор шумный, необходимо глушить характерный свист выходящего под давлением воздуха при помощи дополнительных решений.

Если рассматривать центробежный компрессор, это решение отличается от аналогов наличием крыльчатки, которая похожа на ротор. Крыльчатка сильно раскручивается, подавая воздух в корпус компрессора. При этом за крыльчаткой воздух движется с высокой скоростью, но еще находится под низким давлением.

Чтобы поднять давление, воздух проходит через диффузор. Указанный диффузор представляет собой лопатки, расположенные вокруг крыльчатки. В результате поток воздуха после прохождения через диффузор начинает двигаться с малой скоростью, но уже под высоким давлением. Такой компрессор самый эффективный, легкий и небольшой по размерам. Их можно установить перед мотором, а не на двигателе сверху.

Компрессор на атмосферный двигатель

Начнем с того, что установка компрессора (нагнетателя) во впускной системе двигателя позволяет добиться подачи нужного количества воздуха для сжигания большего количества топлива. Если просто, компрессор-устройство, которое способно создать на выходе давление, которое будет больше атмосферного.

С этой задачей справляются как обычные механические нагнетатели, так и турбокомпрессор. При этом главным отличием турбонагнетателя от компрессора является то, что турбокомпрессор раскручивается за счет выхлопных газов, в то время как механический компрессор приводится от коленвала двигателя.

Как за счет компрессора происходит увеличение мощности двигателя

Атмосферный двигатель внутреннего сгорания осуществляет забор воздуха снаружи в тот момент, когда поршень в цилиндре движется вниз и создается разрежение, в результате чего воздух засасывается в камеру сгорания. Количество поступающего воздуха физически ограничено рабочим объемом, который имеет цилиндр и камера сгорания. После этого воздух смешивается с топливом в определенных пропорциях, после чего заряд (топливно-воздушная смесь) сгорает в цилиндрах.

Если учесть, что объем двигателя не меняется, тогда воздух нужно подавать принудительно под давлением. Это и есть главная задача компрессора. Компрессоры создают давление во впуске, нагнетая воздух в цилиндры. В этом случае остается только впрыснуть больше топлива, после чего такая смесь эффективно горит и отдает энергию поршню. На практике, нагнетатель способен поднять мощность мотора на 35-45%, отмечается около 30% процентов прироста крутящего момента по сравнению с точно таким же атмосферным аналогом.

Мощность электродвигателя

В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

Мощность на валу электродвигателя определяется по следующей формуле:

где: Рм — потребляемая механизмом мощность; ηп — КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где: K3 — коэффициента запаса, он равен 1,1-1,3; g — ускорение свободного падения; Q — производительность насоса; H — высота подъема (расчетная); Y — плотность перекачиваемой насосом жидкости; ηнас — КПД насоса; ηп — КПД передачи.

Давление насоса рассчитывается по формуле:

Формула расчета мощности электродвигателя для компрессора

Мощность поршневого компрессора легко рассчитать по следующей формуле:

где: Q — производительность компрессора; ηk — индикаторный КПД поршневого компрессора (0,6-0,8); ηп — КПД передачи (0,9-0,95); K3 — коэффициент запаса (1,05 -1,15).

Значение A можно рассчитать по формуле:

или взять из таблицы

Формула расчета мощности электродвигателя для вентиляторов

где: K3 — коэффициент запаса. Его значения зависят от мощности двигателя:

  • до 1 кВт — коэффициент 2;
  • от 1 до 2 кВт — коэффициент 1,5;
  • 5 и более кВт — коэффициент 1,1-1,2.

Q — производительность вентилятора; H — давление на выходе; ηв — КПД вентилятора; ηп — КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов — 0,5-0,85.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

Важно! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода

В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Виды компрессионных механизмов, их устройство, недостатки и преимущества

По принципу действия выделяют:

  1. Объемные
  2. Турбокомпрессоры

По величине рабочего давления:

  1. Низкого
  2. Среднего
  3. Высокого

По производительности:

  1. Малые
  2. Средние
  3. Крупные

На производстве в основном используются поршневое и винтовое компрессионное оборудование которые относятся по принципу действия к объемным.

Остановимся на них поподробнее:

Поршневой компрессор используется чаще всего, имеет довольно простую конструкцию и легко обслуживается. Устройство этого аппарата представляет следующее: поворачивающийся с высокой скоростью при помощи двигателя приводной вал вертит кривошипно-шатунный механизм, превращающий вращательное движение в поступательное движение поршня. За каждый круг происходит два смещения поршня. В свою очередь с помощью поршня ресивер снабжается сжатым воздухом.

Поршневой компрессор

Преимущества:

  • Простота конструкции
  • Доступная цена
  • Может использоваться даже в самых тяжёлых условиях
  • Довольно высокий КПД

Недостатки:

  • Большой шум
  • Очень сильно нагревается
  • Высокое энергопотребление

Винтовой компрессор имеет более сложную структуру. Устройство этого аппарата следующее: в непроницаемом корпусе находятся два винта (ротора). Когда один из них получает вращение от двигателя, то второй винт вращается сцеплено. Вращаясь, роторы засасывают воздух, который проходит через фильтры, смешиваясь с маслом и охлаждаясь. Далее он проходит в специальную ёмкость для сжатия, происходит разделение получившийся смеси, в которой масло фильтруется, а на выходе воздух поступает в воздухоохладитель и подаётся через выходное отверстие. Масло в компрессоре выполняет роль охлаждения и смазки.

Винтовой компрессор

Преимущества:

  • Низкие шумы
  • Неограниченный срок службы
  • Низкий расход масла
  • Низкое энергопотребление
  • Высокий КПД

Недостатки:

  • Высокая стоимость
  • Сложность конструкции
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector