Подключение однофазного двигателя

Содержание:

Устройство двигателя

В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается.
В этих схемах вместо установки на вводе рубильников с предохранителями применяют воздушные автоматы. Динамическое торможение, в отличие от торможения противовключением и фрикционного метода, является плавным, мягким торможением.
Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.
Кнопка S2 освобождается и принимает исходное положение, контактор К2М обесточивается, контакты К2 1—2 М размыкаются. Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, так как ток в этом случае идет через блокировочный контакт.
Поэтому для защиты электродвигателей от длительных перегрузок при использовании автомата с электротепловым расцепителем такого типа применяются дополнительные электротепловые реле, как и при использовании автоматического выключателя с электромагнитным расцепителем.
Одновременно закроется вспомогательный контакт K1A. Схема подключения такого двигателя показана на рисунке справа.
Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. Пользователей: Устройство однофазного асинхронного двигателя Однофазные асинхронные двигателя выпускают от 5Вт до 10кВт.
Определение схемы обмоток и рабочего напряжения асинхронного электродвигателя

Схема соединения обмоток электродвигателя

Обмотки электродвигателя могут подключаться к сети одним из двух способов – «звезда» и «треугольник». И выбирать подходящий стоит исходя не из удобства или простоты конструкции, а из величины питающего напряжения.

Для ЭД высокой мощности целесообразно использовать комбинированную систему «треугольник-звезда». Она снижает пусковые токи и делает старт более плавным.

Схема соединения обмоток электродвигателя «треугольником»

При использовании схемы «треугольник» обмотки ЭД подключаются последовательно, соединяясь концами и началами друг с другом. Точки их соединения также подключаются к фазам. Выглядит это следующим образом:

Главное достоинство схемы подключения «треугольник» – ЭД, присоединённый к сети таким образом, способен развивать полную мощность. То есть ту, которая указана в паспорте как номинальная.

Тем не менее, пусковые токи для подключённого электродвигателя очень высокие – они превышают номинальные примерно в 7 раз. И вследствие этого «плавность» работы машины также страдает

Это очень важно учесть при проектировании электропитания устройства и определении сферы практического использования

Схема соединения обмоток электродвигателя «звезда»

Подключение по типу «звезда» подразумевает соединение концов обмоток статора в одной точке. Другими своими концами они подключаются к фазам электропитания. Выглядит это следующим образом:

Подключение по схеме «звезда» гарантирует плавность и «мягкость» работы электродвигателя. Кроме того, для старта машины не требуется относительно высоких пусковых токов. Но недостатком этой методики подключения является сниженная мощность работы устройства.

Тем не менее, важно учесть, что рассчитанные на рабочее напряжении 220/380 Вольт ЭД можно подключать к сети с линейным напряжением 380 В исключительно с использованием схемы «звезда»

Комбинированная схема запуска электродвигателя «звезда-треугольник»

Обе вышеприведённые схемы соединения обмоток асинхронных электродвигателей обладают как достоинствами, так и недостатками. «Треугольник» позволяет машине достичь полной мощности, но требует высоких значений пускового тока для старта. «Звезда» не нуждается в высоком пусковом токе и гарантирует плавную работу устройства, но не даёт ЭД достичь номинальной мощности.

Для решения этой проблемы применяется комбинированная схема подключения «звезда-треугольник». Она применяется в первую очередь для электродвигателей, имеющих высокую мощность (от 5 кВт). Комбинированная схема подразумевает оснащение мотора специальным реле, которое и переключает способ соединения обмоток прямо во время работы.

Так, при запуске ЭД с комбинированным подключением работает по схеме «звезда». Это снижает пусковые токи до их номинальных значений. Но как только ротор раскручивается до высоких оборотов, реле переключает схему соединения на «треугольник». Именно поэтому мотор может достигнуть своей номинальной мощности.

При переключении наблюдается резкий скачок тока. Из-за этого разогнавшийся ротор сначала теряет обороты, но затем постепенно ускоряется.

Стоит отметить, что комбинированное подключение поддерживают только электродвигатели со специальной маркировкой (Y/Δ).

Подключение конденсаторов для запуска однофазных электродвигателей

Конденсатор – это компонент электрической цепи, накапливающий в себе заряд электрического тока. Данный элемент может снижать или повышать нагрузку на компоненты электроприборов. В системе переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения. Емкость элемента измеряют в фарадах (Ф) или микрофарадах (мкФ).

Конструктивно данный элемент представляет собой две пластины или обкладки, посредине которых находится диэлектрик, толщина которого намного меньше размеров обкладок. Конденсатор позволяет накапливать больший или меньший ток, необходимый для корректной работы элементов электрической цепи.

Различают три вида конденсаторов:

  1. Полярные. Не используются в сетях переменного тока из-за быстрого разрушения прослойки диэлектрика. Это приводит к короткому замыканию цепи.
  2. Неполярные. Работают в сетях переменного и постоянного тока. Их обкладки одинаково взаимодействуют с источником и диэлектриком.
  3. Электролитические или оксидные. В этом конденсаторе используют тонкую оксидную пленку в качестве электродов. Это позволяет работать с максимально возможной емкостью конденсатора. Используют на моторах с низкой частотой вращения.

Из этого следует, что для подключения к асинхронному однофазному двигателю более всего подходит неполярный конденсатор.

Для асинхронного двигателя используют конденсаторы:

  • рабочие;
  • пусковые (стартовые).

Первая группа элементов направлена на снижения тока на основной контур обмотки мотора. Она бережет статор от перенапряжения. Стартовые конденсаторы работают кратковременно – до 3 секунд. Они включаются в самом начале работы двигателя.

Подключение конденсатора и разных контуров обмотки может проходить в различной последовательности. Это влияет на производительность мотора и его эксплуатационные характеристики.

Как подключить однофазный асинхронный мотор

В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая. В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой. Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

  1. С использованием балластного сопротивления, подключенного к обмотке пуска.
  2. С включенным конденсатором на обмотке запуска.
  3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

Особенности электродвигателя переменного тока, его достоинства и недостатки

На сегодня электродвигатели являются одними из самых распространенных видов силовых установок, и тому есть немало причин. У них высокий КПД порядка 90%, а иногда и выше, довольно низкая себестоимость и простая конструкция, они не выделяют вредных веществ в процессе эксплуатации, дают возможность плавно менять скорость во время работы без использования дополнительных механизмов типа коробки передач, надежны и долговечны.

Среди недостатков всех типов электромоторов — отсутствие высокоемкостного аккумулятора электроэнергии для автономной работы.

Основное отличие электродвигателя переменного тока от его ближайшего родственника – электродвигателя постоянного тока – заключается в том, что первый питается переменным током. Если сравнивать их функциональные возможности, первый менее мощный, у него сложно регулировать скорость в широком диапазоне, он имеет меньший КПД.

Если же сравнивать асинхронный и синхронный электродвигатель переменного тока, то первый имеет более простую конструкцию и лишен «слабого звена» — графитовых щеток. Именно они обычно первыми выходят из строя при поломке синхронных двигателей. Вместе с тем, у него сложно получить и регулировать постоянную скорость, которая зависит от нагрузки. Синхронные двигатели позволяют регулировать скорость вращения с помощью реостатов.

Одно- и трехфазная сеть

В бытовой сети одна фаза, напряжение в ней 220 В. Но можно подключить к ней и трехфазные электродвигатели, рассчитанные на напряжение 380 В. Для этого используются специальные схемы, вот только выжать из устройства больше 3 кВт мощности практически нереально, так как увеличивается риск привести в негодность электропроводку в доме. Поэтому если имеется необходимость установки сложного оборудования, в котором требуется применять электрические двигатели на 5 или 10 кВт, лучше провести в дом трехфазную сеть. Подключение электродвигателей “звездой” к такой сети произвести намного проще, нежели к однофазной.

Косвенное включение

Подключение однофазного двигателя

Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Электродвигатели постоянного тока

Электрическая мощность в моторе преобразуется в механическую, заставляющую его вращаться, а часть этой мощности расходуется на нагревание проводника. Конструкция двигателя электрического постоянного тока включает якорь и индуктор, которые разделяют воздушные зазоры.  Индуктор, состоящий из добавочных и главных полюсов, и станины,  предназначен  для создания  магнитного поля. Якорь, собранный из отдельных листов, обмотка рабочая и коллектор, благодаря которому постоянный ток подводится к  рабочей обмотке, образуют магнитную систему.  Коллектор – это насаженный на вал двигателя цилиндр, собранный  из изолированных друг от друга медных пластин. К его выступам припаиваются  концы обмотки якоря. Ток с коллектора снимается при помощи щеток, закрепленных в определенном положении в щеткодержателях, благодаря чему  обеспечивается нужный прижим на поверхность коллектора. Щетки с корпусом двигателя соединяются с помощью траверса.

Щетки, в процессе работы, скользят по поверхности вращающегося коллектора, переходя от одной его пластины к другой. При этом, в параллельных секциях обмотки якоря  происходит  изменение тока (когда щетка накоротко замыкает виток). Процесс этот называют коммутацией.

Под влиянием своего магнитного поля, в замкнутой секции обмотки возникает ЭДС самоиндукции, вызывающая появление дополнительного тока, который на поверхности  щеток распределяет неравномерно ток, что приводит к искрению.

Два первых способа встречаются намного чаще третьего, ввиду его неэкономичности. Ток возбуждения  регулируется при помощи любого устройства, у которого возможно изменять активное сопротивление (например, реостата). Регулирование при помощи изменения напряжения требует наличие источника постоянного тока: преобразователя или генератора. Такое регулирование применяют во всех промышленных электроприводах.

Как определить схему подключения обмоток?

Распознать метод обмотки довольно просто. Это можно сделать двумя способами:

Посмотреть номерную табличку на двигателе. Обычно на ней отображены все технические данные, касающиеся работы двигателя. Среди прочего можно встретить два символа:

  • геометрическую фигуру треугольника;
  • звезду из трех лучей.

Необходимо сопоставить, какой из символов в таблице находится под значением 380В. Это может выглядеть следующим образом: 220/380В и рядом с ними символы «треугольник»/«звезда». Данное обозначение говорит, что на моторе, подсоединенном в сеть 380В, работает обмотка звезда.

Однако не всегда на моторе есть подобная табличка. Она может отсутствовать или быть затертой. Данный способ определения больше подходит для новых двигателей, которые никто не ремонтировал и не обслуживал. Старый агрегат лучше проверить самостоятельно. Для этого потребуется второй способ распознания типа обмотки.

Раскрутить блок управления и посмотреть на клеммник. На нем можно увидеть 6 выводов проводов. Соответственно – 3 начала и три конца обмотки. В зависимость от типа коммутации, этих выходов можно говорить о методе обмотки:

  • Метод «звезда». В этом случае три выхода соединены одной перемычкой. Три оставшихся входа подключены к отдельной фазе друг за другом.
  • Метод «треугольник». Каждые два вывода проводов последовательно соединены перемычками. Таким образом обмотки переходят друг в друга. При этом провода питания подведены к каждому входу индивидуально.

Данный способ дает полную картину того, как работает двигатель и по какой схеме он подключен. Зная это, можно подключить мотор к сети 220В.

Конструкция электродвигателей и подключение

Представляет собой асинхронный электромотор , на неподвижной составляющей которого имеется одна рабочая обмотка, подключаемая к источнику однофазного переменного тока. Прозваниваем обмотки.

Подключение на вольт В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Прозваниваем обмотки.

Третий номинал занимает промежуточное положение. Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка: Сломанная опора или монтажные щели.

Более длительное время нахождения под нагрузкой, может привести к перегреву, возгоранию изоляции и поломке механизма. Как известно из той же школьной физики, катушка с током создает магнитное поле. Для этого могут использоваться активные резисторы, катушки индуктивности и конденсаторы. Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Читайте дополнительно: Выключатель 2 х клавишный скрытой проводки

Подключение асинхронного двигателя

Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп

Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса Как подключить поплавковый выключатель к трёхфазному насосу Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети. Но вектор равен сумме своих проекций

Подключение на вольт В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Способы подключения электродвигателей Способы подключения электродвигателей Вначале рассмотрим разницу между устройствами и вольт. При мощности, достигающей больше чем 3 ватт, двигатель подключать не рекомендуется, так как это может стать причиной замыкания и поломкой автомата УЗО.

ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

Мы обязательно Вам ответим. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами.

Если у двигателя отсутствуют специальные пусковые механизмы, то при старте результирующий момент будет равен нулю, а значит — двигатель не будет вращаться. В статичной обмотке статоре осуществляется вращение ротора. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Подключение коллекторного двигателя Такие электродвигатели используются практически во всех бытовых электроприборах.
Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше

Проверка работоспособности

Как проверить работоспособность двигателя путем визуального осмотра?

Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка:

  1. Сломанная опора или монтажные щели.
  2. В середине мотора потемнела краска (указывает на перегревание).
  3. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут.

Если после этого двигатель окажется горячим, то:

  1. Возможно, подшипники загрязнились, зажались или просто износились.
  2. Причина может быть в слишком высокой емкости конденсатора.

Отключите конденсатор, и запустите мотор вручную: если он перестанет нагреваться – необходимо уменьшить конденсаторную емкость.

Навигация по записям

Поэтому для безотказной работы необходима постоянная нагрузка на вал. Приходится применять изыски раскрутки. Он может быть двух видов. Трехполюсный автоматический выключатель Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо.
Например приставка ПКИ. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.
Эта схема и используется чаще всего. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.
При размыкании контакта стрелка пойдет к минусу. Рабочая обмотка может отличаться и визуальной толщиной в сечении.
Двигатель с магнитным пускателем Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем.
Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера.
Для 3-й обмотки опыт повторяют. Например если электродвигатель на 1,5 кВт.
Как подключить реверс двигателя!

Преимущества совмещенной обмотки «Славянка»

Перемотка электродвигателей на Славянку имеет свои преимущества, среди которых можно выделить следующие:

  • сокращение потребляемой электроэнергии;
  • снижение расходов на эксплуатацию;
  • более высокий КПД;
  • значительное увеличение крутящего и пускового момента;
  • возможность работы сразу в двух режимах – S1 и S3;
  • снижение нагрузок на электросеть за счет уменьшения пусковых токов;
  • более низкий уровень шума;
  • возможность выдерживать большие перегрузки;
  • значительное снижение температуры нагрева обмотки, что сводит к минимуму риск ее перегорания в процессе эксплуатации;
  • повышение надежности электродвигателя.

Таким образом, совмещенная обмотка Славянка – это эффективный способ модернизации асинхронных двигателей и экономии.

Перемотка двигателя на Славянку может осуществляться как в ходе планового ремонта, так и по желанию владельца. При этом состояние самого асинхронного преобразователя не имеет значения – он может быть, как в рабочем состоянии, так и «сгоревшим».

Строение асинхронного двигателя

Для того, чтобы разобраться в теории работы двигателя, нам надо рассмотреть из чего же он состоит.

  1. Крышка клеммной коробки.
  2. Клеммная коробка.
  3. Стяжные болты корпуса.
  4. Вал ротора.
  5. Передняя крышка корпуса.
  6. Опорная плита корпуса.
  7. Корпус с ребрами охлаждения.
  8. Информационная табличка завода-изготовителя («шильдик»).
  9. Задняя крышка корпуса.
  10. Дополнительный вентилятор охлаждения двигателя («вертушка»). «Вертушка» устанавливается не на все двигатели. Если предполагаемое место работы обеспечивает хорошее воздушное охлаждение, то потребности в дополнительном обдуве не требуются.

На самом же деле асинхронный двигатель состоит из трех частей (слева-направо): ротора, статора и корпуса, но главными частями считаются именно ротор и статор, о которых мы с вами и поговорим.

Использование частотного преобразователя

При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании — будет отключаться питание электродвигателя. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на В трёхфазной сети обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику. Подобное состояние оказывает негативное влияние на изоляцию проводов. Но это говорит лишь о том, что механизм перемычек реализован уже в самом двигателе.
Подключение треугольником выполняется ко второму пускателю, а подключение звездой — к третьему.
Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК.
Принцип работы схемы немного сложнее, рассмотрим в динамике. Подключение к однофазной сети Трехфазный агрегат с успехом можно подключить к однофазной сети.
Длительность работы нельзя прогнозировать. Дело в том, не всегда трёхфазная сеть имеет привычное напряжение в В.
Ниже вы видите брно и клеммники, которые в него устанавливаются. Это означает использование переключений выводов обмоток для получения по выбору одного из двух вариантов соединения обмоток.
В этом случае его необходимо его необходимо установить в разрыв между третьим контактом треугольника и нулевым проводом. Подключение к однофазной сети Для подключения трёхфазного электродвигателя В к однофазной сети В чаще всего используется схема с фазосдвигающими конденсаторами пусковыми и рабочими.
Как подключить магнитный пускатель. Схема подключения.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли  бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий  в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления  СИФУ.
  • Регулятора
  • Защиты.

Способы подключения

Ротор начнет догонять поле статора.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения см. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого. Это происходит автоматически — без вмешательства пользователя.
На ней указывается модель, тип, схема подключения, напряжение, а также другие параметры. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Приходится применять изыски раскрутки. Если после этого двигатель окажется горячим, то: Возможно, подшипники загрязнились, зажались или просто износились. Три фазы подключаются к противоположным концам обмоток.
Поэтому однофазный электромотор не запустится сам по себе при подключении к сети. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность.

Принцип действия и схема запуска

По сути, у вас имеется в розетке ноль и фаза. Конденсаторный контакт следует присоединить к нулю, при этом другой — к следующему выходу двигателя. Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Подключение двигателя к сети производится через электромагнитный пускатель.

Их можно встретить в стиральных машинках, кофемолках, мясорубках, шуруповертах, обогревателях и прочих приборах. Правда, трехфазный двигатель проще? Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения см.

С включенным конденсатором на обмотке запуска. Например, если ток равен 1. Обычно у рабочей обмотки асинхронных двигателей сопротивление не более 13 Ом.
Как подключить магнитный пускатель. Схема подключения.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Принцип работы конденсаторного асинхронного двигателя

Для привода барабана в стиральных машинах всегда применялись двухскоростные конденсаторные асинхронные двигатели. Конденсаторный двигатель — разновидность асинхронного двигателя, в обмотки которого включен конденсатор для создания сдвига фазы тока. Подключается в однофазную сеть посредством специальных схем. Работоспособная схема подключения такого двигателя содержит конденсатор (пусковой конденсатор), от чего и произошло название. Давайте рассмотрим простейшую схему подключения конденсаторного двигателя на примере Рис.4

Одна из обмоток (её чаще называют рабочей) подключают напрямую к сети, а пусковую обмотку последовательно через конденсатор. Рабочая и пусковая обмотки геометрически сдвинуты друг относительно друга на определённый угол

Для работы асинхронных двигателей важно, чтобы частота вращения ротора не была равна частоте вращения магнитного поля, создаваемое током обмотки статора. Отсюда и название — асинхронный двигатель

Но однофазная обмотка на статоре не способна создавать вращающее круговое магнитное поле. Поэтому, для соблюдения условий работы асинхронного двигателя, необходимо, что бы и токи были сдвинуты по фазе. Конденсатор в цепи пусковой обмотки создаёт сдвиг фаз токов на электрический угол «фи»=90°. Магнитное поле статора воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает собственное магнитное поле и ток, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться. Относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора называется скольжение асинхронного двигателя.

А — рабочая обмотка В — пусковая обмотка С — пусковой конденсаторПростая схема подключения асинхронного двигателя через конденсатор Рис.4

А теперь представьте, если бы в пусковой обмотке не было конденсатора. Тогда магнитное поле создаваемое статором, создавало бы такое же магнитное поле в роторе. При такой схеме подключения, двигатель можно представить лишь в качестве трансформатора и совпадающие по фазе токи не смогли бы создать вращающее круговое магнитное поле, а пусковой момент был бы настолько мал, что ротор оставался бы почти неподвижным.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими 

Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector