Формулы для вычисления диаметра конуса. пример решения геометрической задачи

Содержание:

Уклон и Конусность

Иногда, в задачах по начертательной геометрии или работах по инженерной графике, или при выполнении других чертежей, требуется построить уклон и конус. В этой статье Вы узнаете о том, что такое уклон и конусность, как их построить, как правильно обозначить на чертеже.

Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения.
Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.

Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки.

Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали.

Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.

Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона.

Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.

Что такое конусность? Формула для расчёта конусности. Обозначение конусности на чертежах

Конусность. Конусностью называется отношение диаметра основания конуса к высоте. Конусность рассчитывается по формуле К=D/h, где D – диаметр основания конуса, h – высота. Если конус усеченный, то конусность рассчитывается как отношение разности диаметров усеченного конуса к его высоте. В случае усечённого конуса, формула конусности будет иметь вид: К = (D-d)/h.

Обозначение конусности на чертежах.

Форму и величину конуса определяют нанесением трех из перечисленных размеров: 1) диаметр большого основания D; 2) диаметр малого основания d; 3) диаметр в заданном поперечном сечении Ds , имеющем заданное осевое положение Ls; 4) длина конуса L; 5) угол конуса а; 6) конусность с . Также на чертеже допускается указывать и дополнительные размеры, как справочные.

Размеры стандартизованных конусов не нужно указывать на чертеже. Достаточно на чертеже привести условное обозначение конусности по соответствующему стандарту.

Конусность, как и уклон, может быть указана в градусах, дробью (простой, в виде отношения двух чисел или десятичной), в процентах.
Например, конусность 1:5 может быть также обозначена как отношение 1:5, 11°25’16», десятичной дробью 0,2 и в процентах 20.

Для конусов, которые применяются в машиностроении, OCT/BKC 7652 устанавливает ряд нормальных конусностей. Нормальные конусности — 1:3; 1:5; 1:8; 1:10; 1:15; 1:20; 1:30; 1:50; 1:100; 1:200. Также в могут быть использованы — 30, 45, 60, 75, 90 и 120°.

Как сделать дымник – защиту для трубы?

Чтобы в дымовую трубу не попадали осадки, чтобы она не разрушалась льдом, её нужно защитить дымником. Мастера-жестянщики могут изготовить дымник на трубу самых причудливых форм, иногда на дымник устанавливают флюгер, указывающий направление ветра. Но сделать дымник простой конструкции на дымоходную трубу из металла или кирпича можно и своими руками.

Монтаж дымников

С давних времен дымники защищали дымоходы домов, не потеряли они своей актуальности и в наши дни. Если дровяные печи в домах сегодня редкость, то почти в каждом загородном доме есть камин, вытяжную трубу которого необходимо оградить от попадания в неё атмосферных осадков, птиц, осенней листвы и других посторонних предметов.

Нуждаются в такой же защите и все остальные трубы, выходящие на крышу: вентиляционные и дымовые трубы газовых отопительных приборов. Кроме защитной и декоративной функции, дымники способны выполнять ещё одну: они улучшают циркуляцию горячего воздуха в каминах и печах. Разберемся, как сделать дымник на трубу своими руками.

Виды дымников

Дымники могут отличаться друг от друга формой крыши, материалом изготовления, наличием дополнительных конструктивных элементов. Поэтому, прежде чем приступить к выполнению работ своими руками, стоит познакомиться с их разновидностями.

Формы крыши дымников

Достаточно внимательно посмотреть на крыши домов в какой-нибудь деревне или загородном поселке, чтобы убедиться в том, что человеческая фантазия неистощима на разные выдумки. Дымовые трубы украшают дымники самых разных форм, а некоторые умельцы приспосабливают вместо них дырявые чугунки, чайники, ведра и даже молочные фляги.

Если же вы хотите сделать настоящий красивый дымник своими руками, вам будет интересно узнать о том, какую форму ему можно придать. Различают следующие формы крыш дымников:

  • Шатровая.
  • Сводчатая (полуцилиндрическая).
  • Двускатная.
  • Четырехскатная (вальмовая).
  • Четырехщипцовая.
  • Шпилеобразная.
  • Плоская и т. д.

На фотографиях ниже вы можете увидеть некоторые из перечисленных вариантов.

Дымник с вальмовой крышей

Дымник с четырехщипцовой крышей

Материалами для изготовления дымников чаще всего служат оцинкованная или нержавеющая сталь, листовая медь. Они могут иметь полимерное покрытие различных оттенков для защиты от коррозии.

Выкройка для конуса

19.11.2012 // Владимир Трунов

Вместо слова «выкройка» иногда употребляют «развертка», однако этот термин неоднозначен: например, разверткой называют инструмент для увеличения диаметра отверстия, и в электронной технике существует понятие развертки. Поэтому, хоть я и обязан употребить слова «развертка конуса», чтобы поисковики и по ним находили эту статью, но пользоваться буду словом «выкройка».

Построение выкройки для конуса — дело нехитрое. Рассмотрим два случая: для полного конуса и для усеченного. На картинке (кликните, чтобы увеличить) показаны эскизы таких конусов и их выкроек. (Сразу замечу, что речь здесь пойдет только о прямых конусах с круглым основанием. Конусы с овальным основанием и наклонные конусы рассмотрим в следующих статьях).

Полный конус

Обозначения:

  • — диаметр основания конуса;
  • — высота конуса;
  • — радиус дуги выкройки;
  • — центральный угол выкройки.

Параметры выкройки рассчитываются по формулам: ; ; где .

Усеченный конус

Обозначения:

  • — диаметр большего основания конуса;
  • — диаметр меньшего основания конуса;
  • — высота конуса;
  • — радиус внешней дуги выкройки;
  • — радиус внутренней дуги выкройки;
  • — центральный угол выкройки.

Формулы для вычисления параметров выкройки: ; ; ; где . Заметим, что эти формулы подойдут и для полного конуса, если мы подставим в них .

Угол при вершине конуса

Иногда при построении конуса принципиальным является значение угла при его вершине (или при мнимой вершине, если конус усеченный). Самый простой пример — когда нужно, чтобы один конус плотно входил в другой. Обозначим этот угол буквой (см. картинку). В этом случае мы можем его использовать вместо одного из трех входных значений: , или . Почему «вместо«, а не «вместе«? Потому что для построения конуса достаточно трех параметров, а значение четвертого вычисляется через значения трех остальных. Почему именно трех, а не двух и не четырех — вопрос, выходящий за рамки этой статьи. Таинственный голос мне подсказывает, что это как-то связано с трехмерностью объекта «конус». (Сравните с двумя исходными параметрами двухмерного объекта «сегмент круга», по которым мы вычисляли все остальные его параметры в статье Геометрия круга.)

Ниже приведены формулы, по которым определяется четвертый параметр конуса, когда заданы три.

  • Заданы ; тогда .
  • Заданы ; тогда .
  • Заданы ; тогда .
  • Заданы ; тогда .

Методы построения выкройки

  • Вычислить значения на калькуляторе и построить выкройку на бумаге (или сразу на металле) при помощи циркуля, линейки и транспортира.
  • Занести формулы и исходные данные в электронную таблицу (например, Microsoft Exel). Полученный результат использовать для построения выкройки при помощи графического редактора (например, CorelDRAW).
  • использовать мою программу Cones, которая нарисует на экране и выведет на печать выкройку для конуса с заданными параметрами. Эту выкройку можно сохранить в виде векторного файла и импортировать в CorelDRAW.

Не параллельные основания

Что касается усеченных конусов, то программа Cones пока строит выкройки для конусов, имеющих только параллельные основания. Для тех, кто ищет способ построения выкройки усеченного конуса с не параллельными основаниями, привожу ссылку, предоставленную одним из посетителей сайта:

Усеченный конус с не параллельными основаниями.

tvlad.ru

Уклоны и конусность — Техническое черчение

  • Уклоном прямой ВС относительно прямой AB (фиг. 57, а) называется отношение:
  • i=AC/AB=tga
  • Конусностью называется отношение разности диаметров двух попе­речных сечений конуса к расстоянию между ними (фиг. 57,б)
  • k=(D-d)/l=2tga
  • Таким образом,
  • k = 2i
  • Уклон и конусность могут быть указаны: а) в градусах; б) дробью простой, в виде отношения двух чисел или десятичной; в) в процентах.
  • Например: конусность, выраженная в градусах — 11°25’16″; отношением —  1:5; дробью —0,2; в процентах — 20%, и соответственно этому уклон в градусах — 5°42’38″; отношением — 1:10; дробью—0,1; в процентах —  10%.
  • Для конусов, применяемых в машиностроении, OCT/BKC 7652 устанавливает следующий ряд нормальных конусностей — 1 :3; 1 :5; 1 :8; 1 : 10; 1 :15; 1:20; 1 :30; 1:50; 1 :100; 1:200, а также 30, 45, 60, 75, 90 и 120°.
  • Допускаются в особых случаях также конусности 1:1,5; 1:7; 1:12 и 110°.

Если требуется через точку Л, лежащую на прямой AB (фиг. 57, в), провести прямую с уклоном i=l:n относительно AB, надо отложить от точки А по направлению данной прямой n произвольных единиц; в конце полученного отрезка AB восстановить перпендикуляр ЕС длиной в одну такую же единицу. Гипотенуза AС построенного прямоугольного треугольника определяет искомую прямую.

  1. Для проведения прямой заданного уклона l:n через точку M, не лежащую на данной прямой AB, можно поступать двояко (фиг. 58):
  2. 1)    построить в стороне прямоугольный треугольник KLN (или KLN1) с отношением катетов l:n, причём катет KL ll AB; затем через точку M провести искомую прямую MD (или MD1) параллельно гипотенузе вспомогательного треугольника KN (или LN1);

2)    опустить из точки M перпендикуляр ME на прямую AВ и при­нять его за единицу. По направлению прямой AB влево или вправо от точки E отложить n таких же отрезков; гипотенузы DM или MD1 по­строенных таким образом прямоугольных треугольников являются иско­мыми прямыми.

Построение конусности l:n относительно данной оси сводится к построению уклонов l:n/2 с каждой стороны оси.

Уклон или конусность чаще всего указывается в процентах или отношением единицы к целому числу. Рассмотрим эти способы построе­ния на примерах.

Пример 1. Требуется построить профиль сечения швеллера № 5 ОСТ 10017-39 (фиг. 59, а), если известно, что уклон его полок равен 10%

Размеры для построения берём из ОСТ 10017-39.

Проводим вертикальную прямую ek, равную h = 50 мм. Из точек e и k проводим прямые ec и kf, равные ширине полки b = 37 мм.

Ввиду того, что обе полки швеллера одинаковы, ограничимся построе­нием только одной из них. Откладываем на прямой ec от точки с отре­зок cm, равный (b-d)/2.

В точке m на перпендикуляре к прямой ec от­кладываем отрезок mn, равный t = 7 мм. Через точку n проводим прямую np параллельно ec, равную 50 мм.

  • Перпендикулярно к np из точки p проводим отрезок ps, равный по длине десяти процентам отрезка np. Величина его определяется из от­ношения:
  • ps/np=10/100,
  • откуда
  • ps=10*50/100=5 мм.

Прямая sn является искомой прямой, имеющей уклон 10% по отно­шению к ec. Дальнейшее построение профиля не представляет затруд­нений.

Отрезок np можно взять любой длины. Чем больше его величина, тем точнее будет построена прямая уклона. Однако для удобства вы­числения следует принимать отрезок np таким, чтобы длина его, выра­жаемая в миллиметрах, оканчивалась на 0 или 5.

П p и м e p 2. Построить профиль сечения двутавра № 10 ОСТ 10016-39 (фиг. 59, б), если известно, что уклон полок его равен 1:6. Размеры для построения берём из ОСТ 10016-39.

Проводим горизонтальную прямую cc, равную ширине полки b = = 68 мм. Через точку e, являющуюся серединой ширины полки, прово­дим вертикальную линию. Откладываем от точки с отрезок mс, равный

(b-d)/4. В точке m, перпендикулярно к отрезку cc, проводим прямую и

на ней откладываем отрезок mn, равный t=6,5 мм. Через точку n проводим горизонтальную прямую np, равную 30 мм, которая будет служить катетом прямоугольного треугольника. Чем длиннее катет, тем точнее будет построен уклон. Для удобства принимают длину отрезка np кратной шести, тогда второй катет будет равен целому числу. Вели­чина второго катета определяется из формулы

  1. i=ps/np=1/6
  2. где i — заданный уклон.
  3. Подставив в формулу числовые значения, получим
  4. ps=30/6=5 мм.

Откладываем в точке p под углом 90° к прямой np вычисленную длину второго катета, получим точку 5. Проводим через точки s и n прямую, которая и будет соответствовать искомой прямой, имеющей уклон 1 :6.

Построение сопряжений такое же, как и для швеллера в предыду­щем примере.

От ровного листа до круглой обечайки:

Вальцы с асимметричным расположением валков (рис.11) производят практически полную гибку обечайки.


Наиболее современными являются четырехвалковые машины (рис.12), на которых за один цикл осуществляется вальцовка и подгибка краев. Радиус гибки обечаек проверяют шаблонами. Возможные дефекты вальцовки цилиндрических обечаек приведены на рис.14.

Конусы и переходные элементы в каждой прочности и качестве материала

В дополнении к шишкам и переходным частям, мы также производим раковины и доборные любого рода. Компоненты, которые не могут транспортироваться в одной части из-за их размер, мы производим, насколько это технически возможно в ряде сегментов, которые могут быть собраны на месте для получения готового продукта.

Высокая точность и надежность в технологии формирования — как раз вовремя

В производстве мы уделяем большое внимание выдающемуся качеству и точности. Существует много причин, по которым вам может понадобиться сделать конус с металлической фольгой

Металлические конусы служат для запирания дымовых труб, вплоть до определенных видов огня на открытом воздухе и во время барбекю, а иногда и в декоративных целях. Складывание листа металла проще, чем вы могли ожидать, поэтому не пугайтесь процесса

Введите его полностью, но с осторожностью, конечно

Также способы получения нужной формы бывают разные.

Гибка конических обечаек производится несколькими способами:

1) Установкой под углом среднего валка у симметричных трехвалковых машин и бокового валка у асимметричных трехвалковых и четырехвалковых вальцев (рис.15). 2) Гибкой по средней линии последовательно по различным участкам (рис.16) на вальцах. Сначала осуществляют подгибку кромок, затем гнут середину заготовки на каждом участке с переустановками. Такой способ приводит к повышенному износу оборудования.


3) Гибка обечаек на вальцах со сменными коническими валками. Этот способ оправдан в серийном и массовом производстве. 4) Безвальцевым способом для листа толщиной до 20 мм. На рис. 17 показан метод свертывания. Кромки 3 и 4 заготовки закрепляют в опорах 2 и 5, сводят друг к другу, одновременно поворачивают опоры в разных направлениях. Далее кромки конической обечайки соединяют на прихватках и снимают со станка. 5) Наиболее производительным способом является изготовление конических обечаек в штампах (рис.18). Перед сваркой частей обечаек производят их предварительную фиксацию для исключения деформации элементов и обеспечения сварочных зазоров. Совмещение кромок обычно производится струбцинами и сборочными кольцами для тонкого листа (рис.19). На одну обечайку устанавливается две струбцины по торцам.

Цилиндричность обечаек обеспечивается специальными приспособлениями с домкратами, распирающими деталь. При сборке габаритных деталей используются стяжные планки и клиновые соединения (рис.20).

Изготовление рабочего конуса на заказ

Карандаш будет рисовать круг, и небольшая выемка, которая оставила компас там, где она была поддержана, должна быть отмечена. 2 Отрежьте круг специальными ножницами из металлической фольги. Носите перчатки так, чтобы края металла были очень острыми. 3 Отрежьте круг пополам. Используя точку поддержки вашего компаса в качестве ориентира и в качестве конечной точки, разрежьте там прямую линию, начинающуюся с обоих концов. Теперь у вас будет круг металлической фольги с щелью, которая начнется с одной стороны и достигнет центра. 4 Перекройте одну сторону разреза над другой. Начиная с щели, надавите куски листа один поверх другого. При этом вы увидите, что круг начинает сжиматься и формировать конус. Остановитесь, когда это необходимо, в зависимости от того, насколько глубоко вы этого хотите. 5 Лента на каждой стороне оверлея. Это предотвратит перемещение металла и избавит вас от грубых краев. Теперь ваш конус металлического лезвия завершен. Носите перчатки всякий раз, когда вы манипулируете металлическим лезвием, чтобы не обрезать руки. Металлическое лезвие Ножницы для металлического лезвия Компас с карандашом Клейкая лента Перчатки. Установление определенных единообразных правил находит свое разумное значение в необходимости гарантировать в отношении всех профессий, подверженных сертификации, цели, требующиеся сертификатов профессионализма.

Объем конуса, его расчет

Геометрия как наука сформировалась в Древнем Египте и достигла высокого уровня развития

Известный философ Платон основал Академию, где пристальное внимание уделялось систематизации имеющихся знаний. Конус как одна из геометрических фигур впервые упоминается в известном трактате Евклида «Начала»

Евклид был знаком с трудами Платона. Сейчас мало кто знает, что слово «конус» в переводе с греческого языка обозначает «сосновая шишка». Греческий математик Евклид, живший в Александрии, по праву считается основоположником геометрической алгебры. Древние греки не только стали преемниками знаний египтян, но и значительно расширили теорию.

Формула для определения конусности

Провести самостоятельно расчет конусности можно при применении различных формул. Стоит учитывать, что в большинстве случаев показатель указывается в градусах, но может и в процентах – все зависит от конкретного случая. Алгоритм проведения расчетов выглядит следующим образом:

  1. K=D-d/l=2tgf=2i. Данная формула характеризуется тем, что конусность характеризуется двойным уклоном. Она основана на получении значения большого и меньшего диаметра, а также расстояния между ними. Кроме этого определяется угол.
  2. Tgf=D/2L. В данном случае требуется протяженность отрезка, который связывает большой и малый диаметр, а также показатель большого диаметра.
  3. F=arctgf. Эта формула применяется для перевода показателя в градусы. Сегодня в большинстве случаев применяются именно градусы, так как их проще выдерживать при непосредственном проведении построений. Что касается процентов, то они зачастую указываются для возможности расчета одного из диаметров. К примеру, если соотношение составляет 20% и дан меньший диаметр, то можно быстро провести расчет большого.

Как ранее было отмечено, конусность 1:5 и другие показатели стандартизированы. Для этого применяется ГОСТ 8593-81.

На чертеже вычисления не отображаются. Как правило, для этого создается дополнительная пояснительная записка. Вычислить основные параметры довольно просто, в некоторых случаях проводится построение чертежа, после чего измеряется значение угла и другие показатели.

ОСНОВНЫЕ РАЗМЕРЫ

2.1. Обозначение размера резьбы, шаги и номинальные значения основных размеров конической (наружной и внутренней) резьбы должны соответствовать указанным на черт.2 и в табл.2.

— рабочая длина резьбы; — длина наружной резьбы от торца до основной плоскости

Черт.2

Таблица 2

Размеры в миллиметрах

Обозначение размера резьбы Шаг Диаметры резьбы в основной плоскости Длина резьбы
0,907 7,723 7,142 6,561 6,5 4,0
9,728 9,147 8,566
1,337 13,157 12,301 11,445 9,7 6,0
16,662 15,806 14,950 10,1 6,4
1,814 20,955 19,793 18,631 13,2 8,2
26,441 25,279 24,117 14,5 9,5
1 2,309 33,249 31,770 30,291 16,8 10,4
1 41,910 40,431 38,952 19,1 12,7
1 47,803 46,324 44,845
2 59,614 58,135 56,656 23,4 15,9
2 75,184 73,705 72,226 26,7 17,5
3 87,884 86,405 84,926 29,8 20,6
3 100,330 98,851 97,372 31,4 22,2
4 113,030 111,551 110,072 35,8 25,4
5 138,430 136,951 135,472 40,1 28,6
6 163,830 162,351 160,872

Допускается применять более короткие длины резьб.

2.2. Числовые значения диаметров и вычисляют по следующим формулам

, (1)

. (2)

Числовые значения диаметра установлены эмпирически.

2.3. Разность действительных размеров должна быть не менее разности номинальных размеров и , указанных в табл.2.

2.4. Длина внутренней конической резьбы должна быть не менее 0,8 (, где — в соответствии с табл.3)*. ________________ * Текст документа соответствует оригиналу. — Примечание изготовителя базы данных.

Таблица 3

Размеры в миллиметрах

Обозначение размера резьбы Смещение основной плоскости резьбы Предельные отклонения диаметра внутренней цилиндрической резьбы
; 0,9 1,1 ±0,071
; 1,3 1,7 ±0,104
; 1,8 2,3 ±0,142
1; 1; 1; 2 2,3 2,9 ±0,180
2; 3; 3; 4; 5; 6 3,5 3,5 ±0,217

Примечание. Предельные отклонения и не распространяются на резьбы с длинами, меньшими указанных в табл.2.

2.5. Обозначение размеров резьбы, шаги и номинальные значения наружного, среднего и внутреннего диаметров внутренней цилиндрической резьбы должны соответствовать указанным на черт.3 и в табл.2.

Как построить развертку поверхности прямого усеченного конуса

Делим основание конуса на 12 равных частей (вписываем правильную пирамиду). Данные элементы построения уже готовы из чертежа «Сечение конуса плоскостью частного положения».

Строим развертку боковой поверхности конуса, которая представляет собой круговой сектор. Центр его радиуса принимается за вершину конуса, а величина радиуса кругового сектора конуса равна длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса. На дугу сектора переносим 12 хорд, которые определят ее длину, а также угол кругового сектора.

К центральной точке дуги сектора боковой развертки усеченного конуса пристраиваем основание конуса. Его основание проецируется в натуральную величину на горизонтальную плоскость проекции.

На развертке конуса к его основанию пристраиваем натуральную величину сечения.

Две крайние образующие конуса, которые формируют его основной контур, проецируются на фронтальную плоскость проекции в натуральную величину, поэтому их можно сразу переносить на развертку боковой поверхности конуса. Так как часть его срезана фронтально проецирующей плоскостью, то перенесем на развертку конуса только крайнюю правую усеченную образующую.  Остальные усеченные образующие конуса проецируются на фронтальную плоскость проекций с искажением. Их натуральную величину находят способом вращения вокруг оси конуса до положения, параллельного фронтальной плоскости проекций.

Сам принцип нахождения натуральных величин образующих усеченного конуса сводится к тому, что проводят из точек пересечения образующих с плоскостью горизонтальную прямую до крайней правой (левой) образующей и на ней отмеряют натуральные их величины. Все действия проводят на фронтальной плоскости проекции.

На каждой образующей, лежащей на развертке боковой поверхности конуса, откладываем действительные длины усеченных образующих. Полученные точки соединяем плавной кривой линией команда Сплайн в Автокад.

Мы выполнили задачу начертательной геометрии на построение развертки усеченного конуса, но чтобы не возникло проблем во время ее защиты (когда я обучался, каждая курсовая по начертательной геометрии защищалась), еще раз рассмотрим принцип вращения для нахождения натуральной величины усеченной образующей конуса.

«Их натуральную величину находят способом вращения вокруг оси конуса до положения, параллельного фронтальной плоскости проекций.» Когда мы вращаем образующую прямого конуса до положения параллельного фронтальной плоскости проекции, то ее траектория описывает дугу на горизонтальной плоскости проекции, а на фронтальной прямую!

Вы можете не проводить линии связи с горизонтальной плоскости проекции на фронтальную, ведь очевидно, что точка будет лежать на крайней основной образующей контура конуса для каждой образующей при нахождении ее натуральной величины. Поэтому сам принцип вращения по нахождению натуральной величины образующих конуса сводится к проведению из точек усеченных образующих горизонтальной прямой до основной образующей контура конуса.

В видеоуроке очень наглядно и подробно показан принцип построения развертки прямого усеченного конуса.

Построение принта

В векторной программе

Импортируем полученную в генераторе векторную развертку в CorelDRAW, затем импортируем или вставляем из буфера нужное для печати изображение. Дальнейшие шаги можно посмотреть на видео How to create the printing image for conical mugs with CorelDRAW. Взято на канале Print Equipment GmbH & Co. KG.

Как создать печатное изображение для конических кружек с помощью CorelDRAW

Простое автоматическое деформирование растрового изображения под векторную форму развертки усеченного конуса, с помощью инструмента «Envelope» (Конверт), показано в видео Latte mug distortion with Corel Draw 2018. Взято на канале Alan Drury Signwriting.

Искажение растровых и векторных объектов для печати кружек латте с помощью Corel Draw 2018 и инструмента «Envelope» (Конверт)

В растровой программе

Открываем полученную в генераторе растровую развертку в PhotoShop, на верхний слой размещаем изображение. Деформирование растровой картинки с помощью инструмента Warp показано на видео Latte Mug Placing a design using Photoshop for Sublimation. Взято на канале Sublimation for Beginners and Beyond.

В специализированных САПР

На видео Warping & 3D Conical cups показан процесс наложения готового дизайна на развертку стаканчика, с помощью системы проектирования упаковки . Взято на канале HYBRID Software.

PACKZ — Warping & 3D Conical cups

Компания Esko-Graphics BV, в дополнение к , предлагает своё решение по дизайну принтов для этикеток нестандартной формы — программный инструмент Studio  для Adobe Illustrator. На видео Warp artwork on conical labels with Studio, пример деформации рисунка для конических этикеток. Взято на канале Esko.

Warp artwork on conical labels with Studio

Компания Appsforlife Software предлагает своё решение для создания конических этикеток — Boxshot 5. Пройдя по этой ссылке вы найдете инструкцию по работе с Boxshot 5 для создания Conical Labels.

Инструкция по работе с Boxshot 5 для создания Conical Labels

Скачать демоверсию Boxshot 5:

Boxshot 5

132.67 MB
0 downloads

Построение развёртки цилиндра[править]

Цилиндрправить

Цилиндр

Тело вращения с наиболее простой развёрткой, имеющей форму прямоугольника, где две параллельные стороны соответствуют высоте цилиндра, а две другие параллельные стороны — длине окружности оснований цилиндра.

Усечённый цилиндр (рыбина)править

Усечённый цилиндр

Подготовка:

  • Для создания развёртки, начертим четырёхугольник ACDE в натуральную величину (см.чертёж).
  • Проведём перпендикуляр BD, из плоскости AC в точку D, отсекая от построения прямую часть цилиндра ABDE, которую можно достроить по мере надобности.
  • Из центра плоскости CD (точка O) проведём дугу, радиусом в половину плоскости CD, и разделим её на 6 частей. Из получившихся точек O, проведём перпендикулярные прямые к плоскости CD. Из точек на плоскости CD, проведём прямые, перпендикулярные к плоскости BD.

Построение:

  • Отрезок BC переносим, и превращаем в вертикаль. Из точки B, вертикали BC, проводим луч, перпендикулярный вертикали BC.
  • Циркулем снимаем размер C-O1, и откладываем на луче, из точки B, точку 1. Снимаем размер B1-C1, и откладываем перпендикуляр из точки 1.
  • Циркулем снимаем размер O1-O2, и откладываем на луче, из точки 1, точку 2. Снимаем размер B2-C2, и откладываем перпендикуляр из точки 2.
  • Повторять, пока не будет отложена точка D.
  • Получившиеся вертикали, из точки C, вертикали BC, до точки D — соединить лекальной кривой.
  • Вторая половина развёртки зеркальна.

Подобным образом строятся любые цилиндрические срезы. Примечание: Почему «Рыбина» — если продолжить построение развёртки, при этом половину построить от точки D, а вторую в обратную сторону от вертикали BC, то получившийся рисунок, будет похож на рыбку, или рыбий хвост.

Чертёж: «Усечённый цилиндр»

Калькуляторы расчета размеров развертки конуса — с пояснениями

Иногда в ходе выполнения тех или иных хозяйственных работ мастер встаёт перед проблемой изготовления конуса – полного или усеченного. Это могут быть операции, скажем, с тонким листовым металлом, эластичным пластиком, обычной тканью или даже бумагой или картоном. А задачи встречаются самый разные – изготовление кожухов, переходников с одного диаметра на другой, козырьков или дефлекторов для дымохода или вентиляции, воронок для водостоков, самодельного абажура. А может быть даже просто маскарадного костюма для ребенка или поделок, заданных учителем труда на дом.

Калькуляторы расчета размеров развертки конуса

Чтобы из плоского материала свернуть объёмную фигуру с заданными параметрами, необходимо вычертить развертку. А для этого требуется рассчитать математически и перенести графически необходимые точные размеры этой плоской фигуры. Как это делается – рассмотрим в настоящей публикации. Помогут нам в этом вопросе калькуляторы расчета размеров развертки конуса.

Несколько слов о рассчитываемых параметрах

Понять принцип расчета будет несложно, разобравшись со следующей схемой:

Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным — принцип не меняется, а расчеты и построение становятся даже проще.

Итак, сам конус определяется радиусами оснований (нижней и верхней окружности) R1 и R2, и высотой Н. Понятно, что если конус не усеченный, то R2 просто равно нулю.

Буквой L обозначена длина боковой стороны (образующей) конуса. Она в некоторых случаях уже известна – например, требуется сделать конус по образцу или выкроить материал для обтяжки уже имеющегося каркаса. Но если она неизвестна – не беда, ее несложно рассчитать.

Справа показана развёртка. Она для усеченного конуса ограничена сектором кольца, образованного двумя дугами, внешней и внутренней, с радиусами Rb и Rs. Для полного конуса Rs также будет равен нулю. Хорошо видно, что Rb = Rs + L

Угловую длину сектора определяет центральный угол f, который в любом случае предстоит рассчитать.

Все расчеты займут буквально минуту, если воспользоваться предлагаемыми калькуляторами:

(Если она уже известна – шаг пропускается)

Перейти к расчётам

Шаг 3 – определение величины центрального угла f

Перейти к расчётам

* * * * * * *

Итак, все данные имеются. Остается на листе бумаги циркулем провести две дуги рассчитанных радиусов. А затем из точки центра с помощью транспортира прочертить два луча под рассчитанным углом – они ограничат развертку по угловой длине.

Существуют и чисто геометрические методы построения довольно точной развертки конуса, без проведения расчётов. Один из них подробно описан в статье нашего портала «Как сделать абажур своими руками».

stroyday.ru

1 Область применения

Настоящий стандарт распространяется на применяемые в машиностроении конусности и углы конусов гладких конических элементов деталей и устанавливает ряды нормальных конусностей от 1:0,289 до 1:500 и углов конусов от 0,114° до 120°.

Настоящий стандарт не распространяется на конусности и углы конусов, связанные расчетными зависимостями с другими принятыми размерами, негладкие конические элементы деталей (призматические элементы, конические резьбы, конические зубчатые передачи и т.д.).

Правила указания размеров и допусков конических поверхностей на чертежах согласно ГОСТ 2.320.

Для чего используется конус

Мы подробно разобрали самые простые варианты как сделать правильный конус из бумаги. Для чего используется эта поделка? Направления у нее самые различные:

  • геометрических выставок;
  • объемных поделок;
  • изготовления маскарадных шляп.

Ваша фантазия подскажет вам, где еще может применяться конус. А мы поможем вам вдохновиться с помощью простой конусной поделки елочки.

Ёлка из конуса

Для нее потребуется:

  • картон;
  • бумага для подарков;
  • скотч;
  • декоративные предметы;
  • ножницы.

В основе изделия, как вы уже поняли, лежит конус. Изготовьте его по одной из предложенных выше инструкций.

Далее работаем по схеме:

  1. Полученный конус, оборачиваем бумагой для подарков. Крепим кончик материала к верхушке скотчем и аккуратно оборачиваем бумагу по фигуре. Отрезаем лишний материал.
  2. Крепим концы с помощью скотча.
  3. Вы не поверите, но елочка готова. Осталось ее украсить как настоящую. С этой целью могут подойти пуговицы, большие бусины и миниатюрные новогодние игрушки.

В ёлке можно сделать отверстия. И если она достаточно широка, поместите внутрь конуса новогодние огоньки. В темноте, они будут приятно мелькать, создавая приятную атмосферу.

http://ngeometry.ru/postroenie-razvertki-konusa.htmlhttp://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-razmerov-razvertki-konusa.htmlhttp://megamaster.info/kak-sdelat-konus-iz-bumagi/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector